

Welcome to PCL documentation!

Note

This site is under construction :)

The Point Cloud Library (PCL) is a standalone, large scale, open project for 2D/3D image and point cloud processing.

PCL is released under the terms of the BSD license, and thus free for commercial and research use. We are financially supported by a consortium of commercial companies, with our own non-profit organization, Open Perception. We would also like to thank individual donors and contributors that have been helping the project.

Basic Usage

	1. PCL Walkthrough
	1.1. Overview

	1.2. Filters

	1.3. Features

	1.4. Keypoints

	1.5. Registration

	1.6. Kd-tree

	1.7. Octree

	1.8. Segmentation

	1.9. Sample Consensus

	1.10. Surface

	1.11. Range Image

	1.12. I/O

	1.13. Visualization

	1.14. Common

	1.15. Search

	1.16. Binaries

	2. Getting Started / Basic Structures
	2.1. Compiling your first code example

	3. Using PCL in your own project
	3.1. Prerequisites

	3.2. Project settings

	3.3. The explanation

	3.4. Compiling and running the project

	3.5. Weird installations

	4. Compiling PCL from source on POSIX compliant systems
	4.1. Stable

	4.2. Experimental

	4.3. Dependencies

	4.4. Troubleshooting

	5. Customizing the PCL build process
	5.1. Audience

	5.2. Prerequisites

	5.3. PCL basic settings

	5.4. The explanation

	5.5. Tweaking basic settings

	5.6. Tweaking advanced settings

	5.7. Detailed description

	6. Building PCL’s dependencies from source on Windows
	6.1. Requirements

	6.2. Building dependencies

	6.3. Building PCL

	7. Compiling PCL from source on Windows
	7.1. Requirements

	7.2. Downloading PCL source code

	7.3. Configuring PCL

	7.4. Building PCL

	7.5. Installing PCL

	7.6. Advanced topics

	7.7. Using PCL

	8. Compiling PCL and its dependencies from MacPorts and source on Mac OS X
	8.1. Prerequisites

	8.2. PCL Dependencies

	8.3. Building, Compiling and Installing PCL Dependencies

	8.4. Building PCL

	8.5. Using PCL

	8.6. Advanced (Developers)

	9. Installing on Mac OS X using Homebrew
	9.1. Prerequisites

	9.2. Using the formula

	9.3. Using PCL

	10. Using PCL with Eclipse
	10.1. Prerequisites

	10.2. Creating the eclipse project files

	10.3. Importing into Eclipse

	10.4. Configuring Eclipse

	10.5. Setting the PCL code style in Eclipse

	10.6. Launching the program

	10.7. Where to get more information

	11. Generate a local documentation for PCL
	11.1. Dependencies

	11.2. Generate the documentation

	11.3. Installing and configuring Apache

	12. Using a matrix to transform a point cloud
	12.1. The code

	12.2. The explanation

	12.3. Compiling and running the program

	12.4. More about transformations

Advanced Usage

	1. Adding your own custom PointT type
	1.1. Why PointT types

	1.2. What PointT types are available in PCL?

	1.3. How are the point types exposed?

	1.4. How to add a new PointT type

	1.5. Example

	2. Writing a new PCL class
	2.1. Advantages: Why contribute?

	2.2. Example: a bilateral filter

	2.3. Setting up the structure

	2.4. Filling in the class structure

	2.5. Taking advantage of other PCL concepts

	2.6. Testing the new class

Features

	1. How 3D Features work in PCL
	1.1. Theoretical primer

	1.2. Terminology

	1.3. How to pass the input

	1.4. An example for normal estimation

Indices and tables

	Index

	Module Index

	Search

1. PCL Walkthrough

This tutorials will walk you through the components of your PCL installation, providing short descriptions of the modules, indicating where they are located and also listing the interaction between different components.

Contents

	PCL Walkthrough

	Overview

	Filters

	Features

	Keypoints

	Registration

	Kd-tree

	Octree

	Segmentation

	Sample Consensus

	Surface

	Range Image

	I/O

	Visualization

	Common

	Search

	Binaries

1.1. Overview

PCL is split in a number of modular libraries. The most important set of released PCL modules is shown below:

	Filters

	Features

	Keypoints

	[image: filters_small]

	[image: features_small]

	[image: keypoints_small]

	Registration

	KdTree

	Octree

	[image: registration_small]

	[image: kdtree_small]

	[image: octree_small]

	Segmentation

	Sample Consensus

	Surface

	[image: segmentation_small]

	[image: sample_consensus_small]

	[image: surface_small]

	Range Image

	I/O

	Visualization

	[image: range_image_small]

	[image: io_small]

	[image: visualization_small]

	Common

	Search

	

	[image: pcl_logo]

	[image: pcl_logo]

	

1.2. Filters

Background

An example of noise removal is presented in the figure below. Due to measurement errors, certain datasets present a large number of shadow points. This complicates the estimation of local point cloud 3D features. Some of these outliers can be filtered by performing a statistical analysis on each point’s neighborhood, and trimming those that do not meet a certain criteria. The sparse outlier removal implementation in PCL is based on the computation of the distribution of point to neighbor distances in the input dataset. For each point, the mean distance from it to all its neighbors is computed. By assuming that the resulting distribution is Gaussian with a mean and a standard deviation, all points whose mean distances are outside an interval defined by the global distances mean and standard deviation can be considered as outliers and trimmed from the dataset.

[image: _images/statistical_removal_2.jpg]
Documentation: http://docs.pointclouds.org/trunk/group__filters.html

Tutorials: http://pointclouds.org/documentation/tutorials/#filtering-tutorial

Interacts with:

	Sample Consensus

	Kdtree

	Octree

Location:

	
	MAC OS X (Homebrew installation)

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/filters/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Linux

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/filters/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Windows

	
	Header files: $(PCL_DIRECTORY)/include/pcl-$(PCL_VERSION)/pcl/filters/

	Binaries: $(PCL_DIRECTORY)/bin/

	$(PCL_DIRECTORY) is the PCL installation directory, e.g., C:\Program Files\PCL $(PCL_VERSION)\

Top

1.3. Features

Background

A theoretical primer explaining how features work in PCL can be found in the 3D Features tutorial [http://pointclouds.org/documentation/tutorials/how_features_work.php].

The features library contains data structures and mechanisms for 3D feature estimation from point cloud data. 3D features are representations at certain 3D points, or positions, in space, which describe geometrical patterns based on the information available around the point. The data space selected around the query point is usually referred to as the k-neighborhood.

The following figure shows a simple example of a selected query point, and its selected k-neighborhood.

[image: _images/features_normal.jpg]
An example of two of the most widely used geometric point features are the underlying surface’s estimated curvature and normal at a query point p. Both of them are considered local features, as they characterize a point using the information provided by its k closest point neighbors. For determining these neighbors efficiently, the input dataset is usually split into smaller chunks using spatial decomposition techniques such as octrees or kD-trees, and then closest point searches are performed in that space. Depending on the application one can opt for either determining a fixed number of k points in the vicinity of p, or all points which are found inside of a sphere of radius r centered at p. Unarguably, one the easiest methods for estimating the surface normals and curvature changes at a point p is to perform an eigendecomposition (i.e., compute the eigenvectors and eigenvalues) of the k-neighborhood point surface patch. Thus, the eigenvector corresponding to the smallest eigenvalue will approximate the surface normal n at point p, while the surface curvature change will be estimated from the eigenvalues as \(\frac{\lambda_0}{\lambda_0+\lambda_1+\lambda_2}\) with \(\lambda_0<\lambda_1<\lambda_2\).

[image: _images/features_bunny.jpg]

Documentation: http://docs.pointclouds.org/trunk/group__features.html

Tutorials: http://pointclouds.org/documentation/tutorials/#features-tutorial

Interacts with:

	Common

	Search

	KdTree

	Octree

	Range Image

Location:

	
	MAC OS X (Homebrew installation)

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/features/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Linux

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/filters/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Windows

	
	Header files: $(PCL_DIRECTORY)/include/pcl-$(PCL_VERSION)/pcl/features/

	Binaries: $(PCL_DIRECTORY)/bin/

	$(PCL_DIRECTORY) is the PCL installation directory, e.g., C:\Program Files\PCL $(PCL_VERSION)\

Top

1.4. Keypoints

Background

The keypoints library contains implementations of two point cloud keypoint detection algorithms. Keypoints (also referred to as interest points [http://en.wikipedia.org/wiki/Interest_point_detection]) are points in an image or point cloud that are stable, distinctive, and can be identified using a well-defined detection criterion. Typically, the number of interest points in a point cloud will be much smaller than the total number of points in the cloud, and when used in combination with local feature descriptors at each keypoint, the keypoints and descriptors can be used to form a compact—yet descriptive—representation of the original data.

The figure below shows the output of NARF keypoints extraction from a range image:

[image: _images/narf_keypoint_extraction.png]

Documentation: http://docs.pointclouds.org/trunk/group__keypoints.html

Tutorials: http://pointclouds.org/documentation/tutorials/#keypoints-tutorial

Interacts with:

	Common

	Search

	KdTree

	Octree

	Range Image

	Features

	Filters

Location:

	
	MAC OS X (Homebrew installation)

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/keypoints/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Linux

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/filters/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Windows

	
	Header files: $(PCL_DIRECTORY)/include/pcl-$(PCL_VERSION)/pcl/keypoints/

	Binaries: $(PCL_DIRECTORY)/bin/

	$(PCL_DIRECTORY) is the PCL installation directory, e.g., C:\Program Files\PCL $(PCL_VERSION)\

Top

1.5. Registration

Background

Combining several datasets into a global consistent model is usually performed using a technique called registration. The key idea is to identify corresponding points between the data sets and find a transformation that minimizes the distance (alignment error) between corresponding points. This process is repeated, since correspondence search is affected by the relative position and orientation of the data sets. Once the alignment errors fall below a given threshold, the registration is said to be complete.

The registration library implements a plethora of point cloud registration algorithms for both organized and unorganized (general purpose) datasets. For instance, PCL contains a set of powerful algorithms that allow the estimation of multiple sets of correspondences, as well as methods for rejecting bad correspondences, and estimating transformations in a robust manner.

[image: _images/scans.jpg]

[image: _images/s1-6.jpg]

Documentation: http://docs.pointclouds.org/trunk/group__registration.html

Tutorials: http://pointclouds.org/documentation/tutorials/#registration-tutorial

Interacts with:

	Common

	KdTree

	Sample Consensus

	Features

Location:

	
	MAC OS X (Homebrew installation)

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/registration/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Linux

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/filters/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Windows

	
	Header files: $(PCL_DIRECTORY)/include/pcl-$(PCL_VERSION)/pcl/registration/

	Binaries: $(PCL_DIRECTORY)/bin/

	$(PCL_DIRECTORY) is the PCL installation directory, e.g., C:\Program Files\PCL $(PCL_VERSION)\

Top

1.6. Kd-tree

Background

A theoretical primer explaining how Kd-trees work can be found in the Kd-tree tutorial [http://pointclouds.org/documentation/tutorials/kdtree_search.php#kdtree-search].

The kdtree library provides the kd-tree data-structure, using FLANN [http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN], that allows for fast nearest neighbor searches [http://en.wikipedia.org/wiki/Nearest_neighbor_search].

A Kd-tree [http://en.wikipedia.org/wiki/Kd-tree] (k-dimensional tree) is a space-partitioning data structure that stores a set of k-dimensional points in a tree structure that enables efficient range searches and nearest neighbor searches. Nearest neighbor searches are a core operation when working with point cloud data and can be used to find correspondences between groups of points or feature descriptors or to define the local neighborhood around a point or points.

[image: _images/3dtree.png]
[image: _images/kdtree_mug.jpg]

Documentation: http://docs.pointclouds.org/trunk/group__kdtree.html

Tutorials: http://pointclouds.org/documentation/tutorials/#kdtree-tutorial

Interacts with: Common

Location:

	
	MAC OS X (Homebrew installation)

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/kdtree/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Linux

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/filters/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Windows

	
	Header files: $(PCL_DIRECTORY)/include/pcl-$(PCL_VERSION)/pcl/kdtree/

	Binaries: $(PCL_DIRECTORY)/bin/

	$(PCL_DIRECTORY) is the PCL installation directory, e.g., C:\Program Files\PCL $(PCL_VERSION)\

Top

1.7. Octree

Background

The octree library provides efficient methods for creating a hierarchical tree data structure from point cloud data. This enables spatial partitioning, downsampling and search operations on the point data set. Each octree node has either eight children or no children. The root node describes a cubic bounding box which encapsulates all points. At every tree level, this space becomes subdivided by a factor of 2 which results in an increased voxel resolution.

The octree implementation provides efficient nearest neighbor search routines, such as “Neighbors within Voxel Search”, “K Nearest Neighbor Search” and “Neighbors within Radius Search”. It automatically adjusts its dimension to the point data set. A set of leaf node classes provide additional functionality, such as spacial “occupancy” and “point density per voxel” checks. Functions for serialization and deserialization enable to efficiently encode the octree structure into a binary format. Furthermore, a memory pool implementation reduces expensive memory allocation and deallocation operations in scenarios where octrees needs to be created at high rate.

The following figure illustrates the voxel bounding boxes of an octree nodes at lowest tree level. The octree voxels are surrounding every 3D point from the Stanford bunny’s surface. The red dots represent the point data. This image is created with the octree_viewer.

[image: _images/octree_bunny.jpg]

Documentation: http://docs.pointclouds.org/trunk/group__octree.html

Tutorials: http://pointclouds.org/documentation/tutorials/#octree-tutorial

Interacts with: Common

Location:

	
	MAC OS X (Homebrew installation)

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/octree/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Linux

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/filters/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Windows

	
	Header files: $(PCL_DIRECTORY)/include/pcl-$(PCL_VERSION)/pcl/octree/

	Binaries: $(PCL_DIRECTORY)/bin/

	$(PCL_DIRECTORY) is the PCL installation directory, e.g., C:\Program Files\PCL $(PCL_VERSION)\

Top

1.8. Segmentation

Background

The segmentation library contains algorithms for segmenting a point cloud into distinct clusters. These algorithms are best suited for processing a point cloud that is composed of a number of spatially isolated regions. In such cases, clustering is often used to break the cloud down into its constituent parts, which can then be processed independently.

A theoretical primer explaining how clustering methods work can be found in the cluster extraction tutorial [http://pointclouds.org/documentation/tutorials/cluster_extraction.php#cluster-extraction].
The two figures illustrate the results of plane model segmentation (left) and cylinder model segmentation (right).

[image: _images/plane_model_seg.jpg]
[image: _images/cylinder_model_seg.jpg]

Documentation: http://docs.pointclouds.org/trunk/group__segmentation.html

Tutorials: http://pointclouds.org/documentation/tutorials/#segmentation-tutorial

Interacts with:

	Common

	Search

	Sample Consensus

	KdTree

	Octree

Location:

	
	MAC OS X (Homebrew installation)

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/segmentation/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Linux

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/filters/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Windows

	
	Header files: $(PCL_DIRECTORY)/include/pcl-$(PCL_VERSION)/pcl/segmentation/

	Binaries: $(PCL_DIRECTORY)/bin/

	$(PCL_DIRECTORY) is the PCL installation directory, e.g., C:\Program Files\PCL $(PCL_VERSION)\

Top

1.9. Sample Consensus

Background

The sample_consensus library holds SAmple Consensus (SAC) methods like RANSAC and models like planes and cylinders. These can combined freely in order to detect specific models and their parameters in point clouds.

A theoretical primer explaining how sample consensus algorithms work can be found in the Random Sample Consensus tutorial [http://pointclouds.org/documentation/tutorials/random_sample_consensus.php#random-sample-consensus]

Some of the models implemented in this library include: lines, planes, cylinders, and spheres. Plane fitting is often applied to the task of detecting common indoor surfaces, such as walls, floors, and table tops. Other models can be used to detect and segment objects with common geometric structures (e.g., fitting a cylinder model to a mug).

[image: _images/sample_consensus_planes_cylinders.jpg]

Documentation: http://docs.pointclouds.org/trunk/group__sample__consensus.html

Tutorials: http://pointclouds.org/documentation/tutorials/#sample-consensus

Interacts with: Common

Location:

	
	MAC OS X (Homebrew installation)

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/sample_consensus/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Linux

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/filters/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Windows

	
	Header files: $(PCL_DIRECTORY)/include/pcl-$(PCL_VERSION)/pcl/sample_consensus/

	Binaries: $(PCL_DIRECTORY)/bin/

	$(PCL_DIRECTORY) is the PCL installation directory, e.g., C:\Program Files\PCL $(PCL_VERSION)\

Top

1.10. Surface

Background

The surface library deals with reconstructing the original surfaces from 3D scans. Depending on the task at hand, this can be for example the hull, a mesh representation or a smoothed/resampled surface with normals.

Smoothing and resampling can be important if the cloud is noisy, or if it is composed of multiple scans that are not aligned perfectly. The complexity of the surface estimation can be adjusted, and normals can be estimated in the same step if needed.

[image: _images/resampling_1.jpg]
Meshing is a general way to create a surface out of points, and currently there are two algorithms provided: a very fast triangulation of the original points, and a slower meshing that does smoothing and hole filling as well.

[image: _images/surface_meshing.jpg]
Creating a convex or concave hull is useful for example when there is a need for a simplified surface representation or when boundaries need to be extracted.

[image: _images/surface_hull.jpg]

Documentation: http://docs.pointclouds.org/trunk/group__surface.html

Tutorials: http://pointclouds.org/documentation/tutorials/#surface-tutorial

Interacts with:

	Common

	Search

	KdTree

	Octree

Location:

	
	MAC OS X (Homebrew installation)

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/surface/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Linux

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/filters/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Windows

	
	Header files: $(PCL_DIRECTORY)/include/pcl-$(PCL_VERSION)/pcl/surface/

	Binaries: $(PCL_DIRECTORY)/bin/

	$(PCL_DIRECTORY) is the PCL installation directory, e.g., C:\Program Files\PCL $(PCL_VERSION)\

Top

1.11. Range Image

Background

The range_image library contains two classes for representing and working with range images. A range image (or depth map) is an image whose pixel values represent a distance or depth from the sensor’s origin. Range images are a common 3D representation and are often generated by stereo or time-of-flight cameras. With knowledge of the camera’s intrinsic calibration parameters, a range image can be converted into a point cloud.

Note: range_image is now a part of Common module.

[image: _images/range_image1.jpg]

Tutorials: http://pointclouds.org/documentation/tutorials/#range-images

Interacts with: Common

Location:

	
	MAC OS X (Homebrew installation)

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/range_image/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Linux

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/filters/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Windows

	
	Header files: $(PCL_DIRECTORY)/include/pcl-$(PCL_VERSION)/pcl/range_image/

	Binaries: $(PCL_DIRECTORY)/bin/

	$(PCL_DIRECTORY) is the PCL installation directory, e.g., C:\Program Files\PCL $(PCL_VERSION)\

Top

1.12. I/O

Background

The io library contains classes and functions for reading and writing point cloud data (PCD) files, as well as capturing point clouds from a variety of sensing devices. An introduction to some of these capabilities can be found in the following tutorials:

	The PCD (Point Cloud Data) file format [http://pointclouds.org/documentation/tutorials/pcd_file_format.php#pcd-file-format]

	Reading PointCloud data from PCD files [http://pointclouds.org/documentation/tutorials/reading_pcd.php#reading-pcd]

	Writing PointCloud data to PCD files [http://pointclouds.org/documentation/tutorials/writing_pcd.php#writing-pcd]

	The OpenNI Grabber Framework in PCL [http://pointclouds.org/documentation/tutorials/openni_grabber.php#openni-grabber]

Documentation: http://docs.pointclouds.org/trunk/group__io.html

Tutorials: http://pointclouds.org/documentation/tutorials/#i-o

Interacts with:

	Common

	Octree

	OpenNI for kinect handling

Location:

	
	MAC OS X (Homebrew installation)

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/io/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Linux

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/filters/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Windows

	
	Header files: $(PCL_DIRECTORY)/include/pcl-$(PCL_VERSION)/pcl/io/

	Binaries: $(PCL_DIRECTORY)/bin/

	$(PCL_DIRECTORY) is the PCL installation directory, e.g., C:\Program Files\PCL $(PCL_VERSION)\

Top

1.13. Visualization

Background

The visualization library was built for the purpose of being able to quickly prototype and visualize the results of algorithms operating on 3D point cloud data. Similar to OpenCV’s highgui routines for displaying 2D images and for drawing basic 2D shapes on screen, the library offers:

methods for rendering and setting visual properties (colors, point sizes, opacity, etc) for any n-D point cloud datasets in pcl::PointCloud<T> format;

[image: _images/bunny1.jpg]
methods for drawing basic 3D shapes on screen (e.g., cylinders, spheres,lines, polygons, etc) either from sets of points or from parametric equations;

[image: _images/shapes1.jpg]
a histogram visualization module (PCLHistogramVisualizer) for 2D plots;

[image: _images/histogram1.jpg]
a multitude of Geometry and Color handlers for pcl::PointCloud<T> datasets;

[image: _images/normals1.jpg]

[image: _images/pcs1.jpg]
a pcl::RangeImage visualization module.

[image: _images/range_image1.jpg]
The package makes use of the VTK library for 3D rendering for range image and 2D operations.

For implementing your own visualizers, take a look at the tests and examples accompanying the library.

Documentation: http://docs.pointclouds.org/trunk/group__visualization.html

Tutorials: http://pointclouds.org/documentation/tutorials/#visualization-tutorial

Interacts with:

	Common

	I/O

	KdTree

	Range Image

	VTK

Location:

	
	MAC OS X (Homebrew installation)

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/visualization/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Linux

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/filters/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Windows

	
	Header files: $(PCL_DIRECTORY)/include/pcl-$(PCL_VERSION)/pcl/visualization/

	Binaries: $(PCL_DIRECTORY)/bin/

	$(PCL_DIRECTORY) is the PCL installation directory, e.g., C:\Program Files\PCL $(PCL_VERSION)\

Top

1.14. Common

Background

The common library contains the common data structures and methods used by the majority of PCL libraries. The core data structures include the PointCloud class and a multitude of point types that are used to represent points, surface normals, RGB color values, feature descriptors, etc. It also contains numerous functions for computing distances/norms, means and covariances, angular conversions, geometric transformations, and more.

Location:

	
	MAC OS X (Homebrew installation)

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/common/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Linux

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/common/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Windows

	
	Header files: $(PCL_DIRECTORY)/include/pcl-$(PCL_VERSION)/pcl/common/

	Binaries: $(PCL_DIRECTORY)/bin/

	$(PCL_DIRECTORY) is the PCL installation directory, e.g., C:\Program Files\PCL $(PCL_VERSION)\

Top

1.15. Search

Background

The search library provides methods for searching for nearest neighbors using different data structures, including:

	KdTree

	Octree

	brute force

	specialized search for organized datasets

Interacts with:

	Common

	Kdtree

	Octree

	Location:

	
	
	MAC OS X (Homebrew installation)

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/search/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Linux

	
	Header files: $(PCL_PREFIX)/pcl-$(PCL_VERSION)/pcl/search/

	Binaries: $(PCL_PREFIX)/bin/

	$(PCL_PREFIX) is the cmake installation prefix CMAKE_INSTALL_PREFIX, e.g., /usr/local/

	
	Windows

	
	Header files: $(PCL_DIRECTORY)/include/pcl-$(PCL_VERSION)/pcl/search/

	Binaries: $(PCL_DIRECTORY)/bin/

	$(PCL_DIRECTORY) is the PCL installation directory, e.g., C:\Program Files\PCL $(PCL_VERSION)\

Top

1.16. Binaries

This section provides a quick reference for some of the common tools in PCL.

	pcl_viewer: a quick way for visualizing PCD (Point Cloud Data) files. More information about PCD files can be found in the PCD file format tutorial [http://pointclouds.org/documentation/tutorials/pcd_file_format.php].

Syntax is: pcl_viewer <file_name 1..N>.<pcd or vtk> <options>, where options are:

-bc r,g,b = background color

-fc r,g,b = foreground color

-ps X = point size (1..64)

-opaque X = rendered point cloud opacity (0..1)

-ax n = enable on-screen display of XYZ axes and scale them to n

-ax_pos X,Y,Z = if axes are enabled, set their X,Y,Z position in space (default 0,0,0)

-cam (*) = use given camera settings as initial view

(*) [Clipping Range / Focal Point / Position / ViewUp / Distance / Field of View Y / Window Size / Window Pos] or use a <filename.cam> that contains the same information.

-multiview 0/1 = enable/disable auto-multi viewport rendering (default disabled)

-normals 0/X = disable/enable the display of every Xth point’s surface normal as lines (default disabled)
-normals_scale X = resize the normal unit vector size to X (default 0.02)

-pc 0/X = disable/enable the display of every Xth point’s principal curvatures as lines (default disabled)
-pc_scale X = resize the principal curvatures vectors size to X (default 0.02)

(Note: for multiple .pcd files, provide multiple -{fc,ps,opaque} parameters; they will be automatically assigned to the right file)

Usage example:

pcl_viewer -multiview 1 data/partial_cup_model.pcd data/partial_cup_model.pcd data/partial_cup_model.pcd

The above will load the partial_cup_model.pcd file 3 times, and will create a multi-viewport rendering (-multiview 1).

[image: _images/ex11.jpg]

	pcd_convert_NaN_nan: converts “NaN” values to “nan” values. (Note: Starting with PCL version 1.0.1 the string representation for NaN is “nan”.)

Usage example:

pcd_convert_NaN_nan input.pcd output.pcd

	convert_pcd_ascii_binary: converts PCD (Point Cloud Data) files from ASCII to binary and viceversa.

Usage example:

convert_pcd_ascii_binary <file_in.pcd> <file_out.pcd> 0/1/2 (ascii/binary/binary_compressed) [precision (ASCII)]

	concatenate_points_pcd: concatenates the points of two or more PCD (Point Cloud Data) files into a single PCD file.

Usage example:

concatenate_points_pcd <filename 1..N.pcd>

(Note: the resulting PCD file will be ``output.pcd``)

	pcd2vtk: converts PCD (Point Cloud Data) files to the VTK format [http://www.vtk.org/VTK/img/file-formats.pdf].

Usage example:

pcd2vtk input.pcd output.vtk

	pcd2ply: converts PCD (Point Cloud Data) files to the PLY format [http://en.wikipedia.org/wiki/PLY_%28file_format%29].

Usage example:

pcd2ply input.pcd output.ply

	mesh2pcd: convert a CAD model to a PCD (Point Cloud Data) file, using ray tracing operations.

Syntax is: mesh2pcd input.{ply,obj} output.pcd <options>, where options are:

-level X = tessellated sphere level (default: 2)

-resolution X = the sphere resolution in angle increments (default: 100 deg)

-leaf_size X = the XYZ leaf size for the VoxelGrid – for data reduction (default: 0.010000 m)

	octree_viewer: allows the visualization of octrees

Syntax is: octree_viewer <file_name.pcd> <octree resolution>

Usage example:

Example: ./octree_viewer ../../test/bunny.pcd 0.02

[image: _images/octree_bunny2.png]

Top

2. Getting Started / Basic Structures

The basic data type in PCL 1.x is a :pcl:`PointCloud<pcl::PointCloud>`. A
PointCloud is a C++ class which contains the following data fields:

	:pcl:`width<pcl::PointCloud::width>` (int)

Specifies the width of the point cloud dataset in the number of points. width has two meanings:

	it can specify the total number of points in the cloud (equal with the number of elements in points – see below) for unorganized datasets;

	it can specify the width (total number of points in a row) of an organized point cloud dataset.

Note

An organized point cloud dataset is the name given to point clouds
that resemble an organized image (or matrix) like structure, where the
data is split into rows and columns. Examples of such point clouds
include data coming from stereo cameras or Time Of Flight cameras. The
advantages of an organized dataset is that by knowing the relationship
between adjacent points (e.g. pixels), nearest neighbor operations are
much more efficient, thus speeding up the computation and lowering the
costs of certain algorithms in PCL.

Note

An projectable point cloud dataset is the name given to point clouds
that have a correlation according to a pinhole camera model between the (u,v) index
of a point in the organized point cloud and the actual 3D values. This correlation can be
expressed in it’s easiest form as: u = f*x/z and v = f*y/z

Examples:

cloud.width = 640; // there are 640 points per line

	:pcl:`height<pcl::PointCloud::height>` (int)

Specifies the height of the point cloud dataset in the number of points. height has two meanings:

	it can specify the height (total number of rows) of an organized point cloud dataset;

	it is set to 1 for unorganized datasets (thus used to check whether a dataset is organized or not).

Example:

cloud.width = 640; // Image-like organized structure, with 480 rows and 640 columns,
cloud.height = 480; // thus 640*480=307200 points total in the dataset

Example:

cloud.width = 307200;
cloud.height = 1; // unorganized point cloud dataset with 307200 points

	:pcl:`points<pcl::PointCloud::points>` (std::vector<PointT>)

Contains the data array where all the points of type PointT are stored. For example, for a cloud containing XYZ data, points contains a vector of pcl::PointXYZ elements:

pcl::PointCloud<pcl::PointXYZ> cloud;
std::vector<pcl::PointXYZ> data = cloud.points;

	:pcl:`is_dense<pcl::PointCloud::is_dense>` (bool)

Specifies if all the data in points is finite (true), or whether the XYZ values of certain points might contain Inf/NaN values (false).

	:pcl:`sensor_origin_<pcl::PointCloud::sensor_origin_>` (Eigen::Vector4f)

Specifies the sensor acquisition pose (origin/translation). This member is usually optional, and not used by the majority of the algorithms in PCL.

	:pcl:`sensor_orientation_<pcl::PointCloud::sensor_orientation_>` (Eigen::Quaternionf)

Specifies the sensor acquisition pose (orientation). This member is usually optional, and not used by the majority of the algorithms in PCL.

To simplify development, the :pcl:`PointCloud<pcl::PointCloud>` class contains
a number of helper member functions. For example, users don’t have to check if
height equals 1 or not in their code in order to see if a dataset is
organized or not, but instead use :pcl:`PointCloud<pcl::PointCloud::isOrganized>`:

if (!cloud.isOrganized ())
 ...

The PointT type is the primary point data type and describes what each
individual element of :pcl:`points<pcl::PointCloud::points>` holds. PCL comes
with a large variety of different point types, most explained in the
Adding your own custom PointT type tutorial.

2.1. Compiling your first code example

Until we find the right minimal code example, please take a look at the
Using PCL in your own project and Writing a new PCL class tutorials to see how
to compile and write code for or using PCL.

3. Using PCL in your own project

This tutorial explains how to use PCL in your own projects.

Contents

	Using PCL in your own project

	Prerequisites

	Project settings

	The explanation

	Compiling and running the project

	Using command line CMake

	Using CMake gui (e.g. Windows)

	Weird installations

3.1. Prerequisites

We assume you have downloaded, compiled and installed PCL on your
machine.

3.2. Project settings

Let us say the project is placed under /PATH/TO/MY/GRAND/PROJECT that
contains a lonely cpp file name pcd_write.cpp (copy it from the
Writing Point Cloud data to PCD files tutorial). In the same folder, create a file named
CMakeLists.txt that contains:

cmake_minimum_required(VERSION 2.6 FATAL_ERROR)
project(MY_GRAND_PROJECT)
find_package(PCL 1.3 REQUIRED COMPONENTS common io)
include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})
add_executable(pcd_write_test pcd_write.cpp)
target_link_libraries(pcd_write_test ${PCL_LIBRARIES})

3.3. The explanation

Now, let’s see what we did.

cmake_minimum_required(VERSION 2.6 FATAL_ERROR)

This is mandatory for cmake, and since we are making very basic
project we don’t need features from cmake 2.8 or higher.

project(MY_GRAND_PROJECT)

This line names your project and sets some useful cmake variables
such as those to refer to the source directory
(MY_GRAND_PROJECT_SOURCE_DIR) and the directory from which you are
invoking cmake (MY_GRAND_PROJECT_BINARY_DIR).

find_package(PCL 1.3 REQUIRED COMPONENTS common io)

We are requesting to find the PCL package at minimum version 1.3. We
also says that it is REQUIRED meaning that cmake will fail
gracefully if it can’t be found. As PCL is modular one can request:

	only one component: find_package(PCL 1.3 REQUIRED COMPONENTS io)

	several: find_package(PCL 1.3 REQUIRED COMPONENTS io common)

	all existing: find_package(PCL 1.3 REQUIRED)

include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})

When PCL is found, several related variables are set:

	PCL_FOUND: set to 1 if PCL is found, otherwise unset

	PCL_INCLUDE_DIRS: set to the paths to PCL installed headers and
the dependency headers

	PCL_LIBRARIES: set to the file names of the built and installed PCL libraries

	PCL_LIBRARY_DIRS: set to the paths to where PCL libraries and 3rd
party dependencies reside

	PCL_VERSION: the version of the found PCL

	PCL_COMPONENTS: lists all available components

	PCL_DEFINITIONS: lists the needed preprocessor definitions and compiler flags

To let cmake know about external headers you include in your project,
one needs to use include_directories() macro. In our case
PCL_INCLUDE_DIRS, contains exactly what we need, thus we ask cmake
to search the paths it contains for a header potentially included.

add_executable(pcd_write_test pcd_write.cpp)

Here, we tell cmake that we are trying to make an executable file
named pcd_write_test from one single source file
pcd_write.cpp. CMake will take care of the suffix (.exe on
Windows platform and blank on UNIX) and the permissions.

target_link_libraries(pcd_write_test ${PCL_LIBRARIES})

The executable we are building makes call to PCL functions. So far, we
have only included the PCL headers so the compilers knows about the
methods we are calling. We need also to make the linker knows about
the libraries we are linking against. As said before the, PCL
found libraries are referred to using PCL_LIBRARIES variable, all
that remains is to trigger the link operation which we do calling
target_link_libraries() macro.
PCLConfig.cmake uses a CMake special feature named EXPORT which
allows for using others’ projects targets as if you built them
yourself. When you are using such targets they are called imported
targets and acts just like any other target.

3.4. Compiling and running the project

3.4.1. Using command line CMake

Make a directory called build, in which the compilation will be
done. Do:

$ cd /PATH/TO/MY/GRAND/PROJECT
$ mkdir build
$ cd build
$ cmake ..

You will see something similar to:

-- The C compiler identification is GNU
-- The CXX compiler identification is GNU
-- Check for working C compiler: /usr/bin/gcc
-- Check for working C compiler: /usr/bin/gcc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Found PCL_IO: /usr/local/lib/libpcl_io.so
-- Found PCL: /usr/local/lib/libpcl_io.so (Required is at least version "1.0")
-- Configuring done
-- Generating done
-- Build files have been written to: /PATH/TO/MY/GRAND/PROJECT/build

If you want to see what is written on the CMake cache:

CMAKE_BUILD_TYPE
CMAKE_INSTALL_PREFIX /usr/local
PCL_DIR /usr/local/share/pcl

Now, we can build up our project, simply typing:

$ make

The result should be as follow:

Scanning dependencies of target pcd_write_test
[100%] Building CXX object
CMakeFiles/pcd_write_test.dir/pcd_write.cpp.o
Linking CXX executable pcd_write_test
[100%] Built target pcd_write_test

The project is now compiled, linked and ready to test:

$./pcd_write_test

Which leads to this:

Saved 5 data points to test_pcd.pcd.
 0.352222 -0.151883 -0.106395
 -0.397406 -0.473106 0.292602
 -0.731898 0.667105 0.441304
 -0.734766 0.854581 -0.0361733
 -0.4607 -0.277468 -0.916762

3.4.2. Using CMake gui (e.g. Windows)

Run CMake GUI, and fill these fields :

	Where is the source code : this is the folder containing the CMakeLists.txt file and the sources.

	Where to build the binaries : this is where the Visual Studio project files will be generated

Then, click Configure. You will be prompted for a generator/compiler. Then click the Generate
button. If there is no errors, the project files will be generated into the Where to build the binaries
folder.

Open the sln file, and build your project!

3.5. Weird installations

CMake has a list of default searchable paths where it seeks for
FindXXX.cmake or XXXConfig.cmake. If you happen to install in some non
obvious repository (let us say in Documents for evils) then you can
help cmake find PCLConfig.cmake adding this line:

set(PCL_DIR "/path/to/PCLConfig.cmake")

before this one:

find_package(PCL 1.3 REQUIRED COMPONENTS common io)
 ...

4. Compiling PCL from source on POSIX compliant systems

Though not a dependency per se, don’t forget that you also need the CMake build system [http://www.cmake.org/download/], at least version 3.5.0.
Additional help on how to use the CMake build system is available here [http://www.pointclouds.org/documentation/tutorials/building_pcl.php#building-pcl].

Please note that the following installation instructions are only valid for POSIX systems (e.g., Linux, MacOS) with an already installed make/gnu toolchain.
For instructions on how to download and compile PCL in Windows (which uses a slightly different process), please visit
our tutorials page [http://www.pointclouds.org/documentation/tutorials/index.php].

Contents

	Compiling PCL from source on POSIX compliant systems

	Stable

	Experimental

	Dependencies

	Mandatory

	Optional

	Troubleshooting

	MacOS X

4.1. Stable

For systems for which we do not offer precompiled binaries, you need to compile Point Cloud Library (PCL) from source. Here are the steps that you need to take:
Go to Github [https://github.com/PointCloudLibrary/pcl/releases] and download the version number of your choice.
Uncompress the tar-bzip archive, e.g. (replace 1.7.2 with the correct version number):

tar xvfj pcl-pcl-1.7.2.tar.gz

Change the directory to the pcl-pcl-1.7.2 (replace 1.7.2 with the correct version number) directory, and create a build directory in there:

cd pcl-pcl-1.7.2 && mkdir build && cd build

Run the CMake build system using the default options:

cmake ..

Or change them (uses cmake-curses-gui):

ccmake ..

Please note that cmake might default to a debug build. If you want to compile a release build of PCL with enhanced compiler optimizations, you can change the build target to “Release” with “-DCMAKE_BUILD_TYPE=Release”:

cmake -DCMAKE_BUILD_TYPE=Release ..

Finally compile everything (see compiler_optimizations [http://www.pointclouds.org/documentation/advanced/compiler_optimizations.php]):

make -j2

And install the result:

make -j2 install

Or alternatively, if you did not change the variable which declares where PCL should be installed, do:

sudo make -j2 install

Here’s everything again, in case you want to copy & paste it:

cd pcl-pcl-1.7.2 && mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make -j2
sudo make -j2 install

Again, for a detailed tutorial on how to compile and install PCL and its dependencies in Microsoft Windows, please visit our tutorials page [http://www.pointclouds.org/documentation/tutorials/index.php]. Additional information for developers is available at the Github PCL Wiki [https://github.com/PointCloudLibrary/pcl/wiki].

4.2. Experimental

If you are eager to try out a certain feature of PCL that is currently under development (or you plan on developing and contributing to PCL), we recommend you try checking out our source repository, as shown below. If you’re just interested in browsing our source code, you can do so by visiting https://github.com/PointCloudLibrary/pcl.

Clone the repository:

git clone https://github.com/PointCloudLibrary/pcl pcl-trunk

Please note that above steps (3-5) are almost identical for compiling the experimental PCL trunk code:

cd pcl-trunk && mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo ..
make -j2
sudo make -j2 install

4.3. Dependencies

Because PCL is split into a list of code libraries, the list of dependencies differs based on what you need to compile. The difference between mandatory and optional dependencies, is that a mandatory dependency is required in order for that particular PCL library to compile and function, while an optional dependency disables certain functionality within a PCL library but compiles the rest of the library that does not require the dependency.

4.3.1. Mandatory

The following code libraries are required for the compilation and usage of the PCL libraries shown below:

pcl_* denotes all PCL libraries, meaning that the particular dependency is a strict requirement for the usage of anything in PCL.

	Logo

	Library

	Minimum version

	Mandatory

	[image: _images/boost_logo.png]

	Boost

	
1.40 (without OpenNI)

1.47 (with OpenNI)

	pcl_*

	[image: _images/eigen_logo.png]

	Eigen

	3.0

	pcl_*

	[image: _images/flann_logo.png]

	FLANN

	1.7.1

	pcl_*

	[image: _images/vtk_logo.png]

	VTK

	5.6

	pcl_visualization

4.3.2. Optional

The following code libraries enable certain additional features for the PCL libraries shown below, and are thus optional:

	Logo

	Library

	Minimum version

	Mandatory

	[image: _images/qhull_logo.png]

	Qhull

	2011.1

	pcl_surface

	[image: _images/openni_logo.png]

	OpenNI

	1.3

	pcl_io

	[image: _images/cuda_logo.png]

	CUDA

	4.0

	pcl_*

4.4. Troubleshooting

In certain situations, the instructions above might fail, either due to custom versions of certain library dependencies installed, or different operating systems than the ones we usually develop on, etc. This section here contains links to discussions held in our community regarding such cases. Please read it before posting new questions on the mailing list, and also use the search features provided by our forums - there’s no point in starting a new thread if an older one that discusses the same issue already exists.

4.4.1. MacOS X

libGL issue when running visualization apps on OSX [http://www.pcl-users.org/libGL-issue-when-running-visualization-apps-on-OSX-td3574302.html#a3574775]

5. Customizing the PCL build process

This tutorial explains how to modify the PCL cmake options and tweak your
building process to better fit the needs of your project and/or your system’s
requirements.

Contents

	Customizing the PCL build process

	Audience

	Prerequisites

	PCL basic settings

	The explanation

	Tweaking basic settings

	Tweaking advanced settings

	Building unit tests

	General remarks

	Detailed description

5.1. Audience

This tutorial targets users with a basic knowledge of CMake, C++ compilers,
linkers, flags and make.

5.2. Prerequisites

We assume you have checked out the last available revision of PCL.

5.3. PCL basic settings

Let’s say PCL is placed under /PATH/TO/PCL, which we will refer to as PCL_ROOT:

$ cd $PCL_ROOT
$ mkdir build && cd build
$ cmake ..

This will cause cmake to create a file called CMakeCache.txt in the build
directory with the default options.

Let’s have a look at what cmake options got enabled:

$ ccmake ..

You should see something like the following on screen:

BUILD_common ON
BUILD_features ON
BUILD_filters ON
BUILD_global_tests OFF
BUILD_io ON
BUILD_kdtree ON
BUILD_keypoints ON
BUILD_octree ON
BUILD_range_image ON
BUILD_registration ON
BUILD_sample_consensus ON
BUILD_segmentation ON
BUILD_surface ON
BUILD_visualization ON
CMAKE_BUILD_TYPE
CMAKE_INSTALL_PREFIX /usr/local
PCL_SHARED_LIBS ON
PCL_VERSION 1.0.0
VTK_DIR /usr/local/lib/vtk-5.6

5.4. The explanation

	BUILD_common: option to enable/disable building of common library

	BUILD_features: option to enable/disable building of features library

	BUILD_filters: option to enable/disable building of filters library

	BUILD_global_tests: option to enable/disable building of global unit tests

	BUILD_io: option to enable/disable building of io library

	BUILD_kdtree: option to enable/disable building of kdtree library

	BUILD_keypoints: option to enable/disable building of keypoints library

	BUILD_octree: option to enable/disable building of octree library

	BUILD_range_image: option to enable/disable building of range_image library

	BUILD_registration: option to enable/disable building of registration library

	BUILD_sample_consensus: option to enable/disable building of sample_consensus library

	BUILD_segmentation: option to enable/disable building of segmentation library

	BUILD_surface: option to enable/disable building of surface library

	BUILD_visualization: option to enable/disable building of visualization library

	CMAKE_BUILD_TYPE: here you specify the build type. In CMake, a CMAKE_BUILD_TYPE corresponds to a set of options and flags passed to the compiler to activate/deactivate a functionality and to constrain the building process.

	CMAKE_INSTALL_PREFIX: where the headers and the built libraries will be installed

	PCL_SHARED_LIBS: option to enable building of shared libraries. Default is yes.

	PCL_VERSION: this is the PCL library version. It affects the built libraries names.

	VTK_DIR: directory of VTK library if found

The above are called cmake cached variables. At this level we only looked at
the basic ones.

5.5. Tweaking basic settings

Depending on your project/system, you might want to enable/disable certain
options. For example, you can prevent the building of:

	tests: setting BUILD_global_tests to OFF

	a library: setting BUILD_LIBRARY_NAME to OFF

Note that if you disable a XXX library that is required for building
YYY then XXX will be built but won’t appear in the cache.

You can also change the build type:

	Debug: means that no optimization is done and all the debugging symbols are embedded into the libraries file. This is platform and compiler dependent. On Linux with gcc this is equivalent to running gcc with -O0 -g -ggdb -Wall

	Release: the compiled code is optimized and no debug information will be printed out. This will lead to -O3 for gcc and -O5 for clang

	RelWithDebInfo: the compiled code is optimized but debugging data is also embedded in the libraries. This is a tradeoff between the two former ones.

	MinSizeRel: this, normally, results in the smallest libraries you can build. This is interesting when building for Android or a restricted memory/space system.

A list of available CMAKE_BUILD_TYPEs can be found typing:

$ cmake --help-variable CMAKE_BUILD_TYPE

5.6. Tweaking advanced settings

Now we are done with all the basic stuff. To turn on advanced cache
options hit t while in ccmake.
Advanced options become especially useful when you have dependencies
installed in unusual locations and thus cmake hangs with
XXX_NOT_FOUND this can even prevent you from building PCL although
you have all the dependencies installed. In this section we will
discuss each dependency entry so that you can configure/build or
update/build PCL according to your system.

5.6.1. Building unit tests

If you want to contribute to PCL, or are modifying the code, you need
to turn on building of unit tests. This is accomplished by setting the BUILD_global_tests
option to ON, with a few caveats. If you’re using ccmake and you find that BUILD_global_tests
is reverting to OFF when you configure, you can move the cursor up to the BUILD_global_tests line to see the
error message.

Two options which will need to be turned ON before BUILD_global_tests are BUILD_outofcore and
BUILD_people. Your mileage may vary.

Also required for unit tests is the source code for the Google C++ Testing Framework. That is
usually as simple as downloading the source, extracting it, and pointing the GTEST_SRC_DIR and GTEST_INCLUDE_DIR
options to the applicable source locations. On Ubuntu, you can simply run apt-get install libgtest-dev.

These steps enable the tests make target, so you can use make tests to run tests.

5.6.2. General remarks

Under ${PCL_ROOT}/cmake/Modules there is a list of FindXXX.cmake files
used to locate dependencies and set their related variables. They have
a list of default searchable paths where to look for them. In addition,
if pkg-config is available then it is triggered to get hints on their
locations. If all of them fail, then we look for a CMake entry or
environment variable named XXX_ROOT to find headers and libraries.
We recommend setting an environment variable since it is independent
from CMake and lasts over the changes you can make to your
configuration.

The available ROOTs you can set are as follow:

	BOOST_ROOT: for boost libraries with value C:/Program Files/boost-1.4.6 for instance

	CMINPACK_ROOT: for cminpack with value C:/Program Files/CMINPACK 1.1.13 for instance

	QHULL_ROOT: for qhull with value C:/Program Files/qhull 6.2.0.1373 for instance

	FLANN_ROOT: for flann with value C:/Program Files/flann 1.6.8 for instance

	EIGEN_ROOT: for eigen with value C:/Program Files/Eigen 3.0.0 for instance

To ensure that all the dependencies were correctly found, beside the
message you get from CMake, you can check or edit each dependency specific
variables and give it the value that best fits your needs.

UNIX users generally don’t have to bother with debug vs release versions
they are fully compliant. You would just loose debug symbols if you use
release libraries version instead of debug while you will end up with much
more verbose output and slower execution. This said, Windows MSVC users
and Apple iCode ones can build debug/release from the same project, thus
it will be safer and more coherent to fill them accordingly.

5.7. Detailed description

Below, each dependency variable is listed, its meaning is explained
then a sample value is given for reference.

	Boost

	cache variable

	meaning

	sample value

	Boost_DATE_TIME_LIBRARY

	full path to boost_date-time.[so,lib,a]

	/usr/local/lib/libboost_date_time.so

	Boost_DATE_TIME_LIBRARY_DEBUG

	full path to boost_date-time.[so,lib,a] (debug version)

	/usr/local/lib/libboost_date_time-gd.so

	Boost_DATE_TIME_LIBRARY_RELEASE

	full path to boost_date-time.[so,lib,a] (release version)

	/usr/local/lib/libboost_date_time.so

	Boost_FILESYSTEM_LIBRARY

	full path to boost_filesystem.[so,lib,a]

	/usr/local/lib/libboost_filesystem.so

	Boost_FILESYSTEM_LIBRARY_DEBUG

	full path to boost_filesystem.[so,lib,a] (debug version)

	/usr/local/lib/libboost_filesystem-gd.so

	Boost_FILESYSTEM_LIBRARY_RELEASE

	full path to boost_filesystem.[so,lib,a] (release version)

	/usr/local/lib/libboost_filesystem.so

	Boost_INCLUDE_DIR

	path to boost headers directory

	/usr/local/include

	Boost_LIBRARY_DIRS

	path to boost libraries directory

	/usr/local/lib

	Boost_SYSTEM_LIBRARY

	full path to boost_system.[so,lib,a]

	/usr/local/lib/libboost_system.so

	Boost_SYSTEM_LIBRARY_DEBUG

	full path to boost_system.[so,lib,a] (debug version)

	/usr/local/lib/libboost_system-gd.so

	Boost_SYSTEM_LIBRARY_RELEASE

	full path to boost_system.[so,lib,a] (release version)

	/usr/local/lib/libboost_system.so

	CMinpack

	cache variable

	meaning

	sample value

	CMINPACK_INCLUDE_DIR

	path to cminpack headers directory

	/usr/local/include/cminpack-1

	CMINPACK_LIBRARY

	full path to cminpack.[so,lib,a] (release version)

	/usr/local/lib/libcminpack.so

	CMINPACK_LIBRARY_DEBUG

	full path to cminpack.[so,lib,a] (debug version)

	/usr/local/lib/libcminpack-gd.so

	FLANN

	cache variable

	meaning

	sample value

	FLANN_INCLUDE_DIR

	path to flann headers directory

	/usr/local/include

	FLANN_LIBRARY

	full path to libflann_cpp.[so,lib,a] (release version)

	/usr/local/lib/libflann_cpp.so

	FLANN_LIBRARY_DEBUG

	full path to libflann_cpp.[so,lib,a] (debug version)

	/usr/local/lib/libflann_cpp-gd.so

	Eigen

	cache variable

	meaning

	sample value

	EIGEN_INCLUDE_DIR

	path to eigen headers directory

	/usr/local/include/eigen3

6. Building PCL’s dependencies from source on Windows

This tutorial explains how to build the Point Cloud Library needed dependencies from source on
Microsoft Windows platforms, and tries to guide you through the download and
the compilation process. As an example, we will be building the sources with Microsoft Visual Studio
2008 to get 32bit libraries. The procedure is almost the same for other compilers and for 64bit libraries.

Note

Don’t forget that all the dependencies must be compiled using the same
compiler options and architecture specifications, i.e. you can’t mix 32 bit
libraries with 64 bit libraries.

[image: Microsoft Windows logo]

Contents

	Building PCL’s dependencies from source on Windows

	Requirements

	Building dependencies

	Building PCL

6.1. Requirements

In order to compile every component of the PCL library we need to download and
compile a series of 3rd party library dependencies:

	Boost version >= 1.46.1 (http://www.boost.org/)

used for shared pointers, and threading. mandatory

	Eigen version >= 3.0.0 (http://eigen.tuxfamily.org/)

used as the matrix backend for SSE optimized math. mandatory

	FLANN version >= 1.6.8 (http://www.cs.ubc.ca/research/flann/)

used in kdtree for fast approximate nearest neighbors search. mandatory

	Visualization ToolKit (VTK) version >= 5.6.1 (http://www.vtk.org/)

used in visualization for 3D point cloud rendering and visualization. mandatory

	googletest version >= 1.6.0 (http://code.google.com/p/googletest/)

used to build test units. optional

	QHULL version >= 2011.1 (http://www.qhull.org/)

used for convex/concave hull decompositions in surface. optional

	OpenNI version >= 1.1.0.25 (http://www.openni.org/)

used to grab point clouds from OpenNI compliant devices. optional

	Qt version >= 4.6 (http://qt.digia.com/)

used for developing applications with a graphical user interface (GUI) optional

Note

Though not a dependency per se, don’t forget that you also need the CMake
build system (http://www.cmake.org/), at least version 3.5.0. A Git
client for Windows is also required to download the PCL source code.

6.2. Building dependencies

In this tutorial, we’ll be compiling these libraries versions:

Boost : 1.48.0
Flann : 1.7.1
Qhull : 2011.1
Qt : 4.8.0
VTK : 5.8.0
GTest : 1.6.0

Let’s unpack all our libraries in C:/PCL_dependencies so that it would like
like:

C:/PCL_dependencies
C:/PCL_dependencies/boost-cmake
C:/PCL_dependencies/eigen
C:/PCL_dependencies/flann-1.7.1-src
C:/PCL_dependencies/gtest-1.6.0
C:/PCL_dependencies/qhull
C:/PCL_dependencies/VTK

	Boost :

Let’s start with Boost. We will be using the CMake-able Boost project which provide a CMake based build system
for Boost.

To build Boost, open the CMake-gui and fill in the fields:

Where is my source code: C:/PCL_dependencies/boost-cmake
Where to build binaries: C:/PCL_dependencies/boost-cmake/build

Before clicking on “Configure”, click on “Add Entry” button in the top right of CMake gui, in
the popup window, fill the fields as follows:

Name : LIBPREFIX
Type : STRING
Value : lib

Note

If you are using Visual Studio 2010, then add also these 3 CMake entries before clicking “Configure”:

Name : BOOST_TOOLSET
Type : STRING
Value : vc100

Name : BOOST_COMPILER
Type : STRING
Value : msvc

Name : BOOST_COMPILER_VERSION
Type : STRING
Value : 10.0

Hit the “Configure” button and CMake will tell that the binaries folder doesn’t exist yet
(e.g., C:/PCL_dependencies/boost-cmake/build) and it will ask for a confirmation.

Proceed and be sure to choose the correct “Generator” on the next window. So, we choose “Visual Studio 9 2008”
generator.

[image: CMake generator selection]

Note

If you want to build 64 bit libraries, then choose “Visual Studio 9 2008 Win64” as generator.

By default, all of the Boost modules will be built. If you want to build only the required modules for PCL,
then fill the BUILD_PROJECTS CMake entry (which is set to ALL by default) with a semicolon-seperated
list of boost modules:

BUILD_PROJECTS : system;filesystem;date_time;iostreams;tr1;serialization

Also, uncheck the ENABLE_STATIC_RUNTIME checkbox. Then, click “Configure” again. If you get some
errors related to Python, then uncheck WITH_PYTHON checkbox, and click “Configure” again.
Now, in the CMake log, you should see something like:

Reading boost project directories (per BUILD_PROJECTS)

+ date_time
+ serialization
+ system
+ filesystem
+-- optional python bindings disabled since PYTHON_FOUND is false.
+ tr1

Now, click “Generate”. A Visual Studio solution file will be generated inside the build folder
(e.g. C:/PCL_dependencies/boost-cmake/build). Open the Boost.sln file, then right click on
INSTALL project and choose Build. The `INSTALL`project will trigger the build of all the projects
in the solution file, and then will install the build libraries along with the header files to the default
installation folder (e.g. C:/Program Files (x86)/Boost).

Note

If you get some errors during the installation process, it could be caused by the UAC of MS Windows
Vista or Seven. To fix this, close Visual Studio, right click on its icon on the Desktop or in the Start Menu,
and choose “Run as administrator”. Then Open the Boost.sln file, and build the INSTALL project.

	Eigen :

Eigen is a headers only library, so you can use the Eigen installer provided on the
downloads page [http://www.pointclouds.org/downloads/windows.html].

	Flann :

Let’s move on to FLANN. Then open CMake-gui and fill in the fields:

Where is my source code: C:/PCL_dependencies/flann-1.7.1-src
Where to build binaries: C:/PCL_dependencies/flann-1.7.1-src/build

Hit the “Configure” button. Proceed and be sure to choose the correct “Generator” on the next window.
You can safely ignore any warning message about hdf5.

Now, on my machine I had to manually set the BUILD_PYTHON_BINDINGS
and BUILD_MATLAB_BINDINGS to OFF otherwise it would not continue to the next
step as it is complaining about unable to find Python and Matlab. Click on
“Advanced mode” and find them, or alternatively, add those entries by clicking
on the “Add Entry” button in the top right of the CMake-gui window. Add one
entry named “BUILD_PYTHON_BINDINGS”, set its type to “Bool” and its value to
unchecked. Do the same with the “BUILD_MATLAB_BINDINGS” entry.

Now hit the “Configure” button and it should work. Go for the “Generate” This will generate
the required project files/makefiles to build the library. Now you can simply
go to C:/PCL_dependencies/flann-1.7.1-src/build and proceed with the compilation using
your toolchain. In case you use Visual Studio, you will find the Visual Studio
Solution file in that folder.

Build the INSTALL project in release mode.

Note

If you don’t have a Python interpreter installed CMake would probably not allow you
to generate the project files. To solve this problem you can install the Python interpreter
(https://www.python.org/download/windows/) or comment the add_subdirectory(test) line
from C:/PCL_dependencies/flann-1.7.1-src/CMakeLists.txt .

	QHull :

Setup the CMake fields with the qhull paths:

Where is my source code: C:/PCL_dependencies/qhull-2011.1
Where to build binaries: C:/PCL_dependencies/qhull-2011.1/build

Before clicking on “Configure”, click on “Add Entry” button in the top right of CMake gui, in
the popup window, fill the fields as follows:

Name : CMAKE_DEBUG_POSTFIX
Type : STRING
Value : _d

Then click “Ok”. This entry will define a postfix to distinguish between debug and release
libraries.

Then hit “Configure” twice and “Generate”. Then build the INSTALL project, both in
debug and release configuration.

	VTK :

Note

If you want to build PCL GUI tools, you need to build VTK with Qt support, so obviously, you need to build/install Qt before VTK.

To configure Qt, we need to have Perl installed on your system. If it is not, just download and install it from http://strawberryperl.com.

To build Qt from sources, download the source archive from Qt website. Unpack it some where on your disk (C:\Qt\4.8.0 e.g. for Qt 4.8.0).
Then open a Visual Studio Command Prompt :

Click Start, point to All Programs, point to Microsoft Visual Studio 20XX, point to Visual Studio Tools,
and then click Visual Studio Command Prompt if you are building in 32bit, or Visual Studio x64 Win64 Command Prompt
if you are building in 64bit.

In the command prompt, cd to Qt directory:

prompt> cd c:\Qt\4.8.0

We configure a minimal build of Qt using the Open Source licence. If you need a custom build, adjust the options as needed:

prompt> configure -opensource -confirm-license -fast -debug-and-release -nomake examples -nomake demos -no-qt3support -no-xmlpatterns -no-multimedia -no-phonon -no-accessibility -no-openvg -no-webkit -no-script -no-scripttools -no-dbus -no-declarative

Now, let’s build Qt:

prompt> nmake

Now, we can clear all the intermediate files to free some disk space:

prompt> nmake clean

We’re done with Qt! But before building VTK, we need to set an environment variable:

QtDir = C:\Qt\4.8.0

and then, append %QtDir%\bin to your PATH environment variable.

Now, configure VTK using CMake (make sure to restart CMake after setting the environment variables).
First, setup the CMake fields with the VTK paths, e.g.:

Where is my source code: C:/PCL_dependencies/VTK
Where to build binaries: C:/PCL_dependencies/VTK/bin32

Then hit “Configure”. Check this checkbox and click “Configure”:

VTK_USE_QT

Make sure CMake did find Qt by looking at QT_QMAKE_EXECUTABLE CMake entry. If not, set it to the path of qmake.exe,
e.g. C:\Qt\4.8.0\bin\qmake.exe, then click “Configure”.

If Qt is found, then check this checkbox and click “Configure”:

VTK_USE_QVTK_QTOPENGL

Then, click “Generate”, open the generated solution file, and build it in debug and release.

That’s it, we’re done with the dependencies!

	GTest :

In case you want PCL tests (not recommended for users), you need to compile the googletest library (GTest).
Setup the CMake fields as usual:

Where is my source code: C:/PCL_dependencies/gtest-1.6.0
Where to build binaries: C:/PCL_dependencies/gtest-1.6.0/bin32

Hit “Configure” and set the following options:

BUILD_SHARED_LIBS OFF
gtest_force_shared_crt ON

Generate and build the resulting project.

6.3. Building PCL

Now that you built and installed PCL dependencies, you can follow the “Compiling PCL from source on Windows” tutorial
to build PCL itself.

7. Compiling PCL from source on Windows

This tutorial explains how to build the Point Cloud Library from source on
Microsoft Windows platforms. In this tutorial, we assume that you have built and installed
all the required dependencies, or that you have installed them using the dependencies
installers provided on the downloads page [http://www.pointclouds.org/downloads/windows.html].

Contents

	Compiling PCL from source on Windows

	Requirements

	Downloading PCL source code

	Configuring PCL

	Building PCL

	Installing PCL

	Advanced topics

	Using PCL

Note

If you installed PCL using one of the all-in-one provided installers, then this tutorial is not for you.
The all-in-one installer already contains prebuilt PCL binaries which are ready to be used without any compilation step.

Note

If there is no installers for your compiler, it is recommended that you build the dependencies
out of source. The Building PCL’s dependencies from source on Windows tutorial should guide you through the download
and the compilation of all the required dependencies.

[image: Microsoft Windows logo]

7.1. Requirements

we assume that you have built and installed all the required dependencies, or that you have installed
them using the dependencies installers provided on the downloads page [http://www.pointclouds.org/downloads/windows.html].
Installing them to the default locations will make configuring PCL easier.

	Boost

used for shared pointers, and threading. mandatory

	Eigen

used as the matrix backend for SSE optimized math. mandatory

	FLANN

used in kdtree for fast approximate nearest neighbors search. mandatory

	Visualization ToolKit (VTK)

used in visualization for 3D point cloud rendering and visualization. mandatory

	Qt

used for applications with a graphical user interface (GUI) optional

	QHULL

used for convex/concave hull decompositions in surface. optional

	OpenNI and patched Sensor Module

used to grab point clouds from OpenNI compliant devices. optional

	GTest version >= 1.6.0 (http://code.google.com/p/googletest/)

is needed only to build PCL tests. We do not provide GTest installers. optional

Note

Though not a dependency per se, don’t forget that you also need the CMake
build system (http://www.cmake.org/), at least version 3.5.0. A Git client
for Windows is also required to download the PCL source code.

7.2. Downloading PCL source code

To build the current official release, download the source archive from
http://pointclouds.org/downloads/ and extract it somewhere on your disk, say C:\PCL\PCL-1.5.1-Source.
In this case, you can go directly to Configuring PCL section, and pay attention to adjust the
paths accordingly.

Or, you might want to build an experimental version
of PCL to test some new features not yet available in the official releases.
For this, you will need git (http://git-scm.com/download).

The invocation to download the source code is thus, using a command line:

cd wherever/you/want/to/put/the/repo/
git clone https://github.com/PointCloudLibrary/pcl.git

You could also use Github for Windows (https://windows.github.com/), but that is potentially more
troublesome than setting up git on windows.

7.3. Configuring PCL

On Windows, we recommend to build shared PCL libraries with static dependencies. In this tutorial, we will use
static dependencies when possible to build shared PCL. You can easily switch to using shared dependencies. Then, you need
to make sure you put the dependencies’ dlls either in your PATH or in the same folder as PCL dlls and executables.
You can also build static PCL libraries if you want.

Run the CMake-gui application and fill in the fields:

Where is the source code : C:/PCL/pcl
Where to build the binaries: C:/PCL

Now hit the “Configure” button. You will be asked for a generator. A generator is simply a compiler.

Note

In this tutorial, we will be using Microsoft Visual C++ 2010 compiler. If you want to build 32bit PCL, then pick the
“Visual Studio 10” generator. If you want to build 64bit PCL, then pick the “Visual Studio 10 Win64”.

Make sure you have installed the right third party dependencies. You cannot mix 32bit and 64bit code, and it is
highly recommended to not mix codes compiled with different compilers.

[image: Choosing a generator]
In the remaining of this tutorial, we will be using “Visual Studio 10 Win64” generator. Once you picked your generator,
hit finish to close the dialog window. CMake will start configuring PCL and looking for its dependencies. For example, we
can get this output :

[image: CMake configure result]
The upper part of CMake window contains a list of CMake variables and its respective values. The lower part contains some logging
output that can help figure out what is happening. We can see, for example, that VTK was not found, thus, the visualization module
will not get built.

Before solving the VTK issue, let’s organize the CMake variables in groups by checking the Grouped checkbox in the top right of
CMake window. Let’s check also the Advanced checkbox to show some advanced CMake variables. Now, if we want to look for a specific
variable value, we can either browse the CMake variables to look for it, or we can use the Search: field to type the variable name.

[image: CMake groupped and advanced variables]
Let’s check whether CMake did actually find the needed third party dependencies or not :

	Boost :

CMake was not able to find boost automatically. No problem, we will help it find it :) . If CMake has found your
boost installation, then skip to the next bullet item.

[image: Boost]
Let’s tell CMake where boost headers are by specifying the headers path in Boost_INCLUDE_DIR variable. For example, my boost
headers are in C:\Program Files\PCL-Boost\include (C:\Program Files\Boost\include for newer installers).
Then, let’s hit configure again ! Hopefully, CMake is now able to find all the other items (the libraries).

[image: Boost]

Note

This behaviour is not common for all libraries. Generally, if CMake is not able to find a specific library or package, we have to
manually set the values of all the CMake related variables. Hopefully, the CMake script responsible of finding boost
is able to find libraries using the headers path.

	Eigen :

Eigen is a header-only library, thus, we need only EIGEN_INCLUDE_DIR to be set. Hopefully, CMake did find Eigen.

[image: Eigen include dir]

	FLANN :

CMake was able to find my FLANN installation. By default on windows, PCL will pick the static FLANN libraries
with _s suffix. Thus, the FLANN_IS_STATIC checkbox is checked by default.

[image: FLANN]

Note

If you rather want to use the shared FLANN libraries (those without the _s suffix), you need to manually edit the
FLANN_LIBRARY and FLANN_LIBRARY_DEBUG variables to remove the _s suffix and do not forget to uncheck
FLANN_IS_STATIC. Make sure the FLANN dlls are either in your PATH or in the same folder as your executables.

Note

In recent PCL, the FLANN_IS_STATIC checkbox no longer exists.

	Qt :

It is highly recommended to install Qt to the default path suggested by the installer. You need then to define an
environment variable named QTDIR to point to Qt installation path (e.g. C:\Qt\4.8.0). Also, you need to
append the bin folder to the PATH environment variable. Once you modify the environment variables, you need to
restart CMake and click “Configure” again. If Qt is not found, you need at least to fill QT_QMAKE_EXECUTABLE
CMake entry with the path of qmake.exe (e.g. C:\Qt\4.8.0\bin\qmake.exe), then click “Configure”.

	VTK :

CMake did not find my VTK installation. There is only one VTK related CMake variable called VTK_DIR. We have to set it
to the path of the folder containing VTKConfig.cmake, which is in my case : C:\Program Files\VTK 5.6\lib\vtk-5.6
(C:\Program Files\VTK 5.8.0\lib\vtk-5.8 for VTK 5.8).
After you set VTK_DIR, hit configure again.

[image: VTK]
After clicking configure, in the logging window, we can see that VTK is found, but the visualization module is still
disabled manually. We have then to enable it by checking the BUILD_visualization checkbox. You can also do the same thing
with the apps module. Then, hit configure again.

[image: VTK found, enable visualization]

	QHull :

CMake was able to find my QHull installation. By default on windows, PCL will pick the static QHull libraries
with static suffix.

[image: QHull]

	OpenNI :

CMake was able to find my OpenNI installation.

[image: OpenNI]

Note

CMake do not look for the installed OpenNI Sensor module. It is needed at runtime.

	GTest :

If you want to build PCL tests, you need to download GTest and build it yourself. In this tutorial, we will not build tests.

Once CMake has found all the needed dependencies, let’s see the PCL specific CMake variables :

[image: PCL]

	PCL_SHARED_LIBS is checked by default. Uncheck it if you want static PCL libs (not recommended).

	CMAKE_INSTALL_PREFIX is where PCL will be installed after building it (more information on this later).

Once PCL configuration is ok, hit the Generate button. CMake will then generate Visual Studio project files (vcproj files)
and the main solution file (PCL.sln) in C:\PCL directory.

7.4. Building PCL

Open that generated solution file (PCL.sln) to finally build the PCL libraries. This is how your solution will look like.

[image: PCL solution with project folders]
Building the “ALL_BUILD” project will build everything.

[image: Build ALL_BUILD project]

Note

Make sure to build the “ALL_BUILD” project in both debug and release mode.

7.5. Installing PCL

To install the built libraries and executables, you need to build the “INSTALL” project in the solution explorer.
This utility project will copy PCL headers, libraries and executable to the directory defined by the CMAKE_INSTALL_PREFIX
CMake variable.

[image: Build INSTALL project]

Note

Make sure to build the “INSTALL” project in both debug and release mode.

Note

It is highly recommended to add the bin folder in PCL installation tree (e.g. C:\Program Files\PCL\bin)
to your PATH environment variable.

7.6. Advanced topics

	Building PCL Tests :

If you want to build PCL tests, you need to download GTest 1.6 (http://code.google.com/p/googletest/) and build it yourself.
Make sure, when you configure GTest via CMake to check the gtest_force_shared_crt checkbox. You need, as usual, to build
GTest in both release and debug.

Back to PCL’s CMake settings, you have to fill the GTEST_* CMake entries (include directory, gtest libraries (debug and release)
and gtestmain libraries (debug and release)). Then, you have to check BUILD_TEST and BUILD_global_tests CMake checkboxes,
and hit Configure and Generate.

	Building the documentation :

You can build the doxygen documentation of PCL in order to have a local up-to-date api documentation. For this, you need
Doxygen (http://www.doxygen.org). You will need also the Graph Visualization Software (GraphViz, http://www.graphviz.org/)
to get the doxygen graphics, specifically the dot executable.

Once you installed these two packages, hit Configure. Three CMake variables should be set (if CMake cannot find them,
you can fill them manually) :

	DOXYGEN_EXECUTABLE : path to doxygen.exe (e.g. C:/Program Files (x86)/doxygen/bin/doxygen.exe)

	DOXYGEN_DOT_EXECUTABLE : path to dot.exe from GraphViz (e.g. C:/Program Files (x86)/Graphviz2.26.3/bin/dot.exe)

	DOXYGEN_DOT_PATH : path of the folder containing dot.exe from GraphViz (e.g. C:/Program Files (x86)/Graphviz2.26.3/bin)

Then, you need to enable the documentation project in Visual Studio by checking the BUILD_DOCUMENTATION checkbox in CMake.

You can also build one single CHM file that will gather all the generated html files into one file. You need the Microsoft
HTML HELP Workshop [http://www.microsoft.com/en-us/download/details.aspx?id=21138].
After you install the Microsoft HTML HELP Workshop, hit Configure. If CMake is not able to find HTML_HEL_COMPILER, then fill
it manually with the path to hhc.exe (e.g. C:/Program Files (x86)/HTML Help Workshop/hhc.exe), then click Configure and Generate.

Now, in PCL Visual Studio solution, you will have a new project called doc. To generate the documentation files, right click on it,
and choose Build. Then, you can build the INSTALL project so that the generated documentation files get copied to
CMAKE_INSTALL_PREFIX/PCL/share/doc/pcl/html folder (e.g. C:\Program Files\PCL\share\doc\pcl\html).

7.7. Using PCL

We finally managed to compile the Point Cloud Library (PCL) as binaries for
Windows. You can start using them in your project by following the
Using PCL in your own project tutorial.

8. Compiling PCL and its dependencies from MacPorts and source on Mac OS X

This tutorial explains how to build the Point Cloud Library
from MacPorts and source on Mac OS X platforms, and tries to guide you
through the download and building of all the required dependencies.

[image: Mac OS X logo]

Contents

	Compiling PCL and its dependencies from MacPorts and source on Mac OS X

	Prerequisites

	PCL Dependencies

	Required

	Optional

	Advanced (Developers)

	Building, Compiling and Installing PCL Dependencies

	Install CMake

	Install Boost

	Install Eigen

	Install FLANN

	Install VTK

	Install Qhull

	Install libusb

	Install Patched OpenNI and Sensor

	Building PCL

	Using PCL

	Advanced (Developers)

	Testing (googletest)

	API Documentation (Doxygen)

	Tutorials (Sphinx)

8.1. Prerequisites

Before getting started download and install the following prerequisites for
Mac OS X:

	
	XCode (https://developer.apple.com/xcode/)

	Apple’s powerful integrated development environment

	
	MacPorts (http://www.macports.org)

	An open-source community initiative to design an easy-to-use
system for compiling, installing, and upgrading either command-line, X11 or
Aqua based open-source software on the Mac OS X operating system.

8.2. PCL Dependencies

In order to compile every component of the PCL library we need to download and
compile a series of 3rd party library dependencies. We’ll cover the building,
compiling and installing of everything in the following sections:

8.2.1. Required

The following libraries are Required to build PCL.

	
	CMake version >= 3.5.0 (http://www.cmake.org)

	Cross-platform, open-source build system.

Note

Though not a dependency per se, the PCL community relies heavily on CMake
for the libraries build process.

	
	Boost version >= 1.46.1 (http://www.boost.org/)

	Provides free peer-reviewed portable C++ source libraries. Used for shared
pointers, and threading.

	
	Eigen version >= 3.0.0 (http://eigen.tuxfamily.org/)

	Unified matrix library. Used as the matrix backend for SSE optimized math.

	FLANN version >= 1.6.8
(http://www.cs.ubc.ca/research/flann/)
Library for performing fast approximate nearest neighbor searches in high
dimensional spaces. Used in kdtree for fast approximate nearest neighbors
search.

	
	Visualization ToolKit (VTK) version >= 5.6.1 (http://www.vtk.org/)

	Software system for 3D computer graphics, image processing and visualization.
Used in visualization for 3D point cloud rendering and visualization.

8.2.2. Optional

The following libraries are Optional and provide extended functionality
within PCL, ie Kinect support.

	
	Qhull version >= 2011.1 (http://www.qhull.org/)

	computes the convex hull, Delaunay triangulation, Voronoi diagram, halfspace
intersection about a point, furthest-site Delaunay triangulation, and
furthest-site Voronoi diagram. Used for convex/concave hull decompositions
in surface.

	
	libusb (http://www.libusb.org/)

	A library that gives user level applications uniform access to USB devices
across many different operating systems.

	
	PCL Patched OpenNI/Sensor (http://www.openni.org/)

	The OpenNI Framework provides the interface for physical devices and for
middleware components. Used to grab point clouds from OpenNI compliant
devices.

8.2.3. Advanced (Developers)

The following libraries are Advanced and provide additional functionality
for PCL developers:

	
	googletest version >= 1.6.0 (http://code.google.com/p/googletest/)

	Google’s framework for writing C++ tests on a variety of platforms. Used
to build test units.

	
	Doxygen (http://www.doxygen.org)

	A documentation system for C++, C, Java, Objective-C, Python, IDL (Corba and
Microsoft flavors), Fortran, VHDL, PHP, C#, and to some extent D.

	
	Sphinx (http://sphinx-doc.org/)

	A tool that makes it easy to create intelligent and beautiful
documentation.

8.3. Building, Compiling and Installing PCL Dependencies

By now you should have downloaded and installed the latest versions of XCode and
MacPorts under the Prerequisites section. We’ll be installing most
dependencies available via MacPorts and the rest will be built from source.

8.3.1. Install CMake

$ sudo port install cmake

8.3.2. Install Boost

$ sudo port install boost

8.3.3. Install Eigen

$ sudo port install eigen3

8.3.4. Install FLANN

$ sudo port install flann

8.3.5. Install VTK

To install via MacPorts:

$ sudo port install vtk5 +qt4_mac

To install from source download the source from
http://www.vtk.org/VTK/resources/software.html

Follow the README.html for compiling on UNIX / Cygwin / Mac OSX:

$ cd VTK
$ mkdir VTK-build
$ cd VTK-build
$ ccmake ../VTK

	Within the CMake configuration:

	Press [c] for initial configuration

Press [t] to get into advanced mode and change the following:

VTK_USE_CARBON:OFF
VTK_USE_COCOA:ON
VTK_USE_X:OFF

Note

VTK must be built with Cocoa support and must be installed,
in order for the visualization module to be able to compile. If you do
not require visualisation, you may omit this step.

Press [g] to generate the make files.

Press [q] to quit.

Then run:

$ make && make install

8.3.6. Install Qhull

$ sudo port install qhull

8.3.7. Install libusb

$ sudo port install libusb-devel +universal

8.3.8. Install Patched OpenNI and Sensor

Download the patched versions of OpenNI and Sensor from the PCL downloads page
http://pointclouds.org/downloads/macosx.html

Extract, build, fix permissions and install OpenNI:

$ unzip openni_osx.zip -d openni_osx
$ cd openni_osx/Redist
$ chmod -R a+r Bin Include Lib
$ chmod -R a+x Bin Lib
$ chmod a+x Include/MacOSX Include/Linux-*
$ sudo ./install

In addition the following primesense xml config found within the patched OpenNI
download needs its permissions fixed and copied to the correct location to for
the Kinect to work on Mac OS X:

$ chmod a+r openni_osx/Redist/Samples/Config/SamplesConfig.xml
$ sudo cp openni_osx/Redist/Samples/Config/SamplesConfig.xml /etc/primesense/

Extract, build, fix permissions and install Sensor:

$ unzip ps_engine_osx.zip -d ps_engine_osx
$ cd ps_engine_osx/Redist
$ chmod -R a+r Bin Lib Config Install
$ chmod -R a+x Bin Lib
$ sudo ./install

8.4. Building PCL

At this point you should have everything needed installed to build PCL with
almost no additional configuration.

Checkout the PCL source from the Github:

$ git clone https://github.com/PointCloudLibrary/pcl
$ cd pcl

Create the build directories, configure CMake, build and install:

$ mkdir build
$ cd build
$ cmake ..
$ make
$ sudo make install

The customization of the build process is out of the scope of this tutorial and
is covered in greater detail in the Customizing the PCL build process tutorial.

8.5. Using PCL

We finally managed to compile the Point Cloud Library (PCL) for Mac OS X. You
can start using them in your project by following the Using PCL in your own project tutorial.

8.6. Advanced (Developers)

8.6.1. Testing (googletest)

8.6.2. API Documentation (Doxygen)

Install Doxygen via MacPorts:

$ sudo port install doxygen

Or install the Prebuilt binary for Mac OS X
(http://www.stack.nl/~dimitri/doxygen/download.html#latestsrc)

After installed you can build the documentation:

$ make doc

8.6.3. Tutorials (Sphinx)

In addition to the API documentation there is also tutorial documentation built
using Sphinx. The easiest way to get this installed is using pythons
easy_install:

$ easy_install -U Sphinx

The Sphinx documentation also requires the third party contrib extension
sphinxcontrib-doxylink (https://pypi.python.org/pypi/sphinxcontrib-doxylink)
to reference the Doxygen built documentation.

To install from source you’ll also need Mercurial:

$ sudo port install mercurial
$ hg clone http://bitbucket.org/birkenfeld/sphinx-contrib
$ cd sphinx-contrib/doxylink
$ python setup.py install

After installed you can build the tutorials:

$ make Tutorials

Note

Sphinx can be installed via MacPorts but is a bit of a pain getting all the
PYTHON_PATH’s in order

9. Installing on Mac OS X using Homebrew

This tutorial explains how to install the Point Cloud Library on Mac OS
X using Homebrew.

[image: Mac OS X logo]

Contents

	Installing on Mac OS X using Homebrew

	Prerequisites

	Using the formula

	Using PCL

9.1. Prerequisites

You will need to have Homebrew installed. If you do not already have a Homebrew installation, see the
Homebrew homepage [http://brew.sh/] for installation instructions.

9.2. Using the formula

The PCL formula is in the Homebrew official repositories.
This will automatically install all necessary dependencies and provides options for controlling
which parts of PCL are installed.

Note

To prepare it, follow these steps:

	Install Homebrew. See the Homebrew website for instructions.

	Execute brew update.

	Execute brew tap homebrew/science.

To install the latest version using the formula, execute the following command:

$ brew install pcl

You can specify options to control which parts of PCL are installed. For
example, to build just the libraries without extra dependencies, execute the following command:

$ brew install pcl --without-apps --without-tools --without-vtk --without-qt

For a full list of the available options, see the formula’s help:

$ brew options pcl

Once PCL is installed, you may wish to periodically upgrade it. Update
Homebrew and, if a PCL update is available, upgrade:

$ brew update
$ brew upgrade pcl

9.3. Using PCL

Now that PCL in installed, you can start using the library in your own
projects by following the Using PCL in your own project tutorial.

10. Using PCL with Eclipse

This tutorial explains how to use Eclipse as an IDE to manage your PCL projects. It was tested under Ubuntu 14.04 with Eclipse Luna;
do not hesitate to modify this tutorial by submitting a pull request on GitHub to add other configurations etc.

Contents

	Using PCL with Eclipse

	Prerequisites

	Creating the eclipse project files

	Importing into Eclipse

	Configuring Eclipse

	Setting the PCL code style in Eclipse

	Global

	Project specific

	How to format the code

	Launching the program

	Where to get more information

10.1. Prerequisites

We assume you have downloaded and extracted a PCL version (either PCL trunk or a stable version) on your machine.
For the example, we will use the pcl visualizer [http://www.pointclouds.org/documentation/tutorials/pcl_visualizer.php] code.

10.2. Creating the eclipse project files

The files are organized like the following tree:

.
├── build
└── src
 ├── CMakeLists.txt
 └── pcl_visualizer_demo.cpp

Open a terminal, navigate to your project root folder and configure the project:

$ cd /path_to_my_project/build
$ cmake -G "Eclipse CDT4 - Unix Makefiles" ../src

You will see something that should look like:

-- The C compiler identification is GNU 4.8.2
-- The CXX compiler identification is GNU 4.8.2
-- Could not determine Eclipse version, assuming at least 3.6 (Helios). Adjust CMAKE_ECLIPSE_VERSION if this is wrong.
-- Check for working C compiler: /usr/lib/ccache/cc
-- Check for working C compiler: /usr/lib/ccache/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: /usr/lib/ccache/c++
-- Check for working CXX compiler: /usr/lib/ccache/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- checking for module 'eigen3'
-- found eigen3, version 3.2.0
-- Found eigen: /usr/include/eigen3
-- Boost version: 1.54.0
-- Found the following Boost libraries:
-- system
-- filesystem
-- thread
-- date_time
-- iostreams
-- mpi
-- serialization
-- chrono
-- checking for module 'openni-dev'
-- package 'openni-dev' not found
-- Found openni: /usr/lib/libOpenNI.so
-- checking for module 'openni2-dev'
-- package 'openni2-dev' not found
-- Found OpenNI2: /usr/lib/libOpenNI2.so
** WARNING ** io features related to pcap will be disabled
** WARNING ** io features related to png will be disabled
-- Found libusb-1.0: /usr/include
-- checking for module 'flann'
-- found flann, version 1.8.4
-- Found Flann: /usr/lib/x86_64-linux-gnu/libflann_cpp_s.a
-- Found qhull: /usr/lib/x86_64-linux-gnu/libqhull.so
-- checking for module 'openni-dev'
-- package 'openni-dev' not found
-- checking for module 'openni2-dev'
-- package 'openni2-dev' not found
-- looking for PCL_COMMON
-- Found PCL_COMMON: /usr/local/lib/libpcl_common.so
-- looking for PCL_OCTREE
-- Found PCL_OCTREE: /usr/local/lib/libpcl_octree.so
-- looking for PCL_IO
-- Found PCL_IO: /usr/local/lib/libpcl_io.so
-- looking for PCL_KDTREE
-- Found PCL_KDTREE: /usr/local/lib/libpcl_kdtree.so
-- looking for PCL_SEARCH
-- Found PCL_SEARCH: /usr/local/lib/libpcl_search.so
-- looking for PCL_SAMPLE_CONSENSUS
-- Found PCL_SAMPLE_CONSENSUS: /usr/local/lib/libpcl_sample_consensus.so
-- looking for PCL_FILTERS
-- Found PCL_FILTERS: /usr/local/lib/libpcl_filters.so
-- looking for PCL_2D
-- Found PCL_2D: /usr/local/include/pcl-1.7
-- looking for PCL_FEATURES
-- Found PCL_FEATURES: /usr/local/lib/libpcl_features.so
-- looking for PCL_GEOMETRY
-- Found PCL_GEOMETRY: /usr/local/include/pcl-1.7
-- looking for PCL_KEYPOINTS
-- Found PCL_KEYPOINTS: /usr/local/lib/libpcl_keypoints.so
-- looking for PCL_SURFACE
-- Found PCL_SURFACE: /usr/local/lib/libpcl_surface.so
-- looking for PCL_REGISTRATION
-- Found PCL_REGISTRATION: /usr/local/lib/libpcl_registration.so
-- looking for PCL_ML
-- Found PCL_ML: /usr/local/lib/libpcl_ml.so
-- looking for PCL_SEGMENTATION
-- Found PCL_SEGMENTATION: /usr/local/lib/libpcl_segmentation.so
-- looking for PCL_RECOGNITION
-- Found PCL_RECOGNITION: /usr/local/lib/libpcl_recognition.so
-- looking for PCL_VISUALIZATION
-- Found PCL_VISUALIZATION: /usr/local/lib/libpcl_visualization.so
-- looking for PCL_PEOPLE
-- Found PCL_PEOPLE: /usr/local/lib/libpcl_people.so
-- looking for PCL_OUTOFCORE
-- Found PCL_OUTOFCORE: /usr/local/lib/libpcl_outofcore.so
-- looking for PCL_TRACKING
-- Found PCL_TRACKING: /usr/local/lib/libpcl_tracking.so
-- looking for PCL_STEREO
-- Found PCL_STEREO: /usr/local/lib/libpcl_stereo.so
-- looking for PCL_GPU_CONTAINERS
-- Found PCL_GPU_CONTAINERS: /usr/local/lib/libpcl_gpu_containers.so
-- looking for PCL_GPU_UTILS
-- Found PCL_GPU_UTILS: /usr/local/lib/libpcl_gpu_utils.so
-- looking for PCL_GPU_OCTREE
-- Found PCL_GPU_OCTREE: /usr/local/lib/libpcl_gpu_octree.so
-- looking for PCL_GPU_FEATURES
-- Found PCL_GPU_FEATURES: /usr/local/lib/libpcl_gpu_features.so
-- looking for PCL_GPU_KINFU
-- Found PCL_GPU_KINFU: /usr/local/lib/libpcl_gpu_kinfu.so
-- looking for PCL_GPU_KINFU_LARGE_SCALE
-- Found PCL_GPU_KINFU_LARGE_SCALE: /usr/local/lib/libpcl_gpu_kinfu_large_scale.so
-- looking for PCL_GPU_SEGMENTATION
-- Found PCL_GPU_SEGMENTATION: /usr/local/lib/libpcl_gpu_segmentation.so
-- looking for PCL_CUDA_COMMON
-- Found PCL_CUDA_COMMON: /usr/local/include/pcl-1.7
-- looking for PCL_CUDA_FEATURES
-- Found PCL_CUDA_FEATURES: /usr/local/lib/libpcl_cuda_features.so
-- looking for PCL_CUDA_SEGMENTATION
-- Found PCL_CUDA_SEGMENTATION: /usr/local/lib/libpcl_cuda_segmentation.so
-- looking for PCL_CUDA_SAMPLE_CONSENSUS
-- Found PCL_CUDA_SAMPLE_CONSENSUS: /usr/local/lib/libpcl_cuda_sample_consensus.so
-- Found PCL: /usr/lib/x86_64-linux-gnu/libboost_system.so;/usr/lib/x86_64-linux-gnu/libboost_filesystem.so;/usr/lib/x86_64-linux-gnu/libboost_thread.so;/usr/lib/x86_64-linux-gnu/libboost_date_time.so;/usr/lib/x86_64-linux-gnu/libboost_iostreams.so;/usr/lib/x86_64-linux-gnu/libboost_mpi.so;/usr/lib/x86_64-linux-gnu/libboost_serialization.so;/usr/lib/x86_64-linux-gnu/libboost_chrono.so;/usr/lib/x86_64-linux-gnu/libpthread.so;optimized;/usr/local/lib/libpcl_common.so;debug;/usr/local/lib/libpcl_common.so;optimized;/usr/local/lib/libpcl_octree.so;debug;/usr/local/lib/libpcl_octree.so;/usr/lib/libOpenNI.so;/usr/lib/libOpenNI2.so;vtkCommon;vtkFiltering;vtkImaging;vtkGraphics;vtkGenericFiltering;vtkIO;vtkRendering;vtkVolumeRendering;vtkHybrid;vtkWidgets;vtkParallel;vtkInfovis;vtkGeovis;vtkViews;vtkCharts;optimized;/usr/local/lib/libpcl_io.so;debug;/usr/local/lib/libpcl_io.so;optimized;/usr/lib/x86_64-linux-gnu/libflann_cpp_s.a;debug;/usr/lib/x86_64-linux-gnu/libflann_cpp_s.a;optimized;/usr/local/lib/libpcl_kdtree.so;debug;/usr/local/lib/libpcl_kdtree.so;optimized;/usr/local/lib/libpcl_search.so;debug;/usr/local/lib/libpcl_search.so;optimized;/usr/local/lib/libpcl_sample_consensus.so;debug;/usr/local/lib/libpcl_sample_consensus.so;optimized;/usr/local/lib/libpcl_filters.so;debug;/usr/local/lib/libpcl_filters.so;optimized;/usr/local/lib/libpcl_features.so;debug;/usr/local/lib/libpcl_features.so;optimized;/usr/local/lib/libpcl_keypoints.so;debug;/usr/local/lib/libpcl_keypoints.so;optimized;/usr/lib/x86_64-linux-gnu/libqhull.so;debug;/usr/lib/x86_64-linux-gnu/libqhull.so;optimized;/usr/local/lib/libpcl_surface.so;debug;/usr/local/lib/libpcl_surface.so;optimized;/usr/local/lib/libpcl_registration.so;debug;/usr/local/lib/libpcl_registration.so;optimized;/usr/local/lib/libpcl_ml.so;debug;/usr/local/lib/libpcl_ml.so;optimized;/usr/local/lib/libpcl_segmentation.so;debug;/usr/local/lib/libpcl_segmentation.so;optimized;/usr/local/lib/libpcl_recognition.so;debug;/usr/local/lib/libpcl_recognition.so;optimized;/usr/local/lib/libpcl_visualization.so;debug;/usr/local/lib/libpcl_visualization.so;optimized;/usr/local/lib/libpcl_people.so;debug;/usr/local/lib/libpcl_people.so;optimized;/usr/local/lib/libpcl_outofcore.so;debug;/usr/local/lib/libpcl_outofcore.so;optimized;/usr/local/lib/libpcl_tracking.so;debug;/usr/local/lib/libpcl_tracking.so;optimized;/usr/local/lib/libpcl_stereo.so;debug;/usr/local/lib/libpcl_stereo.so;optimized;/usr/local/lib/libpcl_gpu_containers.so;debug;/usr/local/lib/libpcl_gpu_containers.so;optimized;/usr/local/lib/libpcl_gpu_utils.so;debug;/usr/local/lib/libpcl_gpu_utils.so;optimized;/usr/local/lib/libpcl_gpu_octree.so;debug;/usr/local/lib/libpcl_gpu_octree.so;optimized;/usr/local/lib/libpcl_gpu_features.so;debug;/usr/local/lib/libpcl_gpu_features.so;optimized;/usr/local/lib/libpcl_gpu_kinfu.so;debug;/usr/local/lib/libpcl_gpu_kinfu.so;optimized;/usr/local/lib/libpcl_gpu_kinfu_large_scale.so;debug;/usr/local/lib/libpcl_gpu_kinfu_large_scale.so;optimized;/usr/local/lib/libpcl_gpu_segmentation.so;debug;/usr/local/lib/libpcl_gpu_segmentation.so;optimized;/usr/local/lib/libpcl_cuda_features.so;debug;/usr/local/lib/libpcl_cuda_features.so;optimized;/usr/local/lib/libpcl_cuda_segmentation.so;debug;/usr/local/lib/libpcl_cuda_segmentation.so;optimized;/usr/local/lib/libpcl_cuda_sample_consensus.so;debug;/usr/local/lib/libpcl_cuda_sample_consensus.so;/usr/lib/x86_64-linux-gnu/libboost_system.so;/usr/lib/x86_64-linux-gnu/libboost_filesystem.so;/usr/lib/x86_64-linux-gnu/libboost_thread.so;/usr/lib/x86_64-linux-gnu/libboost_date_time.so;/usr/lib/x86_64-linux-gnu/libboost_iostreams.so;/usr/lib/x86_64-linux-gnu/libboost_mpi.so;/usr/lib/x86_64-linux-gnu/libboost_serialization.so;/usr/lib/x86_64-linux-gnu/libboost_chrono.so;/usr/lib/x86_64-linux-gnu/libpthread.so;optimized;/usr/lib/x86_64-linux-gnu/libqhull.so;debug;/usr/lib/x86_64-linux-gnu/libqhull.so;/usr/lib/libOpenNI.so;/usr/lib/libOpenNI2.so;optimized;/usr/lib/x86_64-linux-gnu/libflann_cpp_s.a;debug;/usr/lib/x86_64-linux-gnu/libflann_cpp_s.a;vtkCommon;vtkFiltering;vtkImaging;vtkGraphics;vtkGenericFiltering;vtkIO;vtkRendering;vtkVolumeRendering;vtkHybrid;vtkWidgets;vtkParallel;vtkInfovis;vtkGeovis;vtkViews;vtkCharts (Required is at least version "1.7")
-- Configuring done
-- Generating done
-- Build files have been written to: /home/dell/visualizer/build

10.3. Importing into Eclipse

	Launch Eclipse CDT [http://eclipse.org/cdt/] and select File > Import.

	In the list select General > Existing Projects into Workspace and then next.

	Browse (Select root directory) to the root folder of the project and select the build folder (in the example case, /home/dell/visualizer/build).

	Click Finish.

Warning

The Eclipse indexer is going to parse the files in the project (and all the includes), this can take a lot of time and might crash Eclipse if it’s not configured for big projects.
Take a look at the bottom right of Eclipse’s window to see the indexer status; it is advised not to do anything until the indexer has finished it’s job.

10.4. Configuring Eclipse

If Eclipse fails to open your PCL project you might need to change Eclipse configuration; here are some values that should solve all problems
(but might not work on light hardware configurations):

$ sudo gedit /usr/lib/eclipse/eclipse.ini

Change the values in the last lines:

org.eclipse.platform
--launcher.XXMaxPermSize
1024m
--launcher.defaultAction
openFile
--launcher.appendVmargs
-vmargs
-Dosgi.requiredJavaVersion=1.7
-XX:MaxPermSize=512m
-Xms1024m
-Xmx1024m

Restart Eclipse and go to Windows > Preferences, then C/C++ > Indexer > Cache Limits. Set the limits to [50% | 512 | 512].

10.5. Setting the PCL code style in Eclipse

You can find a PCL code style file for Eclipse in PCL GitHub trunk [https://github.com/PointCloudLibrary/pcl/blob/master/doc/advanced/content/files/PCL_eclipse_profile.xml]

10.5.1. Global

If you want to apply the PCL style guide to all projects:
Windows > Preferences > C/C++ > Code Style > Formatter

10.5.2. Project specific

If you want to apply the style guide only to one project:
Go to Project > Properties, then select Code Style in the left field and Enable project specific settings, then Import and select where you profile file (.xml) is.

10.5.3. How to format the code

If you want to format the whole project use Source > Format. If you want to format only your selection use the shortcut Ctrl + Shift + F

10.6. Launching the program

To build the project, click on the build icon

[image: _images/build_tab.gif]

	Create a launch configuration, select the project on the left panel (left click on the project name); Run > Run Configurations...

	Create a new C/C++ Application click on Search Project and choose the executable to be launched.

	Go the second tab (Arguments) and enter your arguments; remember this is not a terminal and ~ won’t work to get to your home folder for example !

Run the program by clicking on the run icon

[image: _images/lrun_obj.gif]
The Eclipse console doesn’t manage ANSI colours, you could use an ANSI console plugin [http://www.mihai-nita.net/eclipse/] to get rid of the “[0m” characters in the output.

10.7. Where to get more information

You can get more information about the Eclipse CDT4 Generator here [http://www.vtk.org/Wiki/Eclipse_CDT4_Generator].

11. Generate a local documentation for PCL

For practical reasons you might want to have a local documentation which corresponds to your
PCL version. In this tutorial you will learn how to generate it and how to set up Apache so that
the search bar works.

This tutorial was written for Ubuntu 12.04 and 14.04, feel free to edit it on GitHub to add your platform.

Contents

	Generate a local documentation for PCL

	Dependencies

	Generate the documentation

	Installing and configuring Apache

11.1. Dependencies

You need to install a few dependencies in order to be able to generate the documentation:

$ sudo apt-get install doxygen graphviz sphinx3 python-pip
$ sudo pip install sphinxcontrib-doxylink

11.2. Generate the documentation

Go into the build folder of PCL where you’ve configured it (see tutorial [http://www.pointclouds.org/downloads/source.html]) and enter:

$ make doc

Then you can open the documentation with your browser, for example:

$ firefox doc/doxygen/html/index.html

The documentation has been generated in your PCL build directory but it is not installed; if you wish to install it just do:

$ sudo make install

The default PCL CMAKE_INSTALL_PREFIX is /usr/local, this means the documentation will be located in /usr/local/share/doc/pcl-1.7/html/index.html

Note

You will quickly notice that the search bar doesn’t work! (searching opens “search.php” instead of searching)

11.3. Installing and configuring Apache

Apache (The Apache HTTP Server [https://en.wikipedia.org/wiki/Apache_HTTP_Server]) is a web server application, in this section you will
learn how to configure Apache in order to be able to use the search feature within your offline documentation.

First you need to install Apache and php:

$ sudo apt-get install apache2 php5 libapache2-mod-php5

Then you need to edit the default website location:

$ sudo gedit /etc/apache2/sites-available/000-default.conf

Change DocumentRoot (default = /var/www/html) to /usr/local/share/doc/pcl-1.7/html/ (or your local PCL doc build path)

After that change the Apache directory options:

$ sudo gedit +153 /etc/apache2/apache2.conf

Replace the paragraph at line 153 with:

<Directory />
 #Options FollowSymLinks
 Options Indexes FollowSymLinks Includes ExecCGI
 AllowOverride All
 Order deny,allow
 Allow from all
</Directory>

Restart Apache and the search bar will now work if you open localhost:

$ sudo /etc/init.d/apache2 restart
$ firefox localhost

12. Using a matrix to transform a point cloud

In this tutorial we will learn how to transform a point cloud using a 4x4 matrix.
We will apply a rotation and a translation to a loaded point cloud and display then
result.

This program is able to load one PCD or PLY file; apply a matrix transformation on it
and display the original and transformed point cloud.

Contents

	Using a matrix to transform a point cloud

	The code

	The explanation

	Compiling and running the program

	More about transformations

12.1. The code

First, create a file, let’s say, matrix_transform.cpp in your favorite
editor, and place the following code inside it:

12.2. The explanation

Now, let’s break down the code piece by piece.

We include all the headers we will make use of.
#include <pcl/common/transforms.h> allows us to use pcl::transformPointCloud function.

This function display the help in case the user didn’t provide expected arguments.

We parse the arguments on the command line, either using -h or –help will
display the help. This terminates the program

We look for .ply or .pcd filenames in the arguments. If not found; terminate the program.
The bool file_is_pcd will help us choose between loading PCD or PLY file.

We now load the PCD/PLY file and check if the file was loaded successfully. Otherwise terminate
the program.

This is a first approach to create a transformation. This will help you understand how transformation matrices work.
We initialize a 4x4 matrix to identity;

 | 1 0 0 0 |
i = | 0 1 0 0 |
 | 0 0 1 0 |
 | 0 0 0 1 |

Note

The identity matrix is the equivalent of “1” when multiplying numbers; it changes nothing.
It is a square matrix with ones on the main diagonal and zeros elsewhere.

This means no transformation (no rotation and no translation). We do not use the
last row of the matrix.

The first 3 rows and columns (top left) components are the rotation
matrix. The first 3 rows of the last column is the translation.

Here we defined a 45° (PI/4) rotation around the Z axis and a translation on the X axis.
This is the transformation we just defined

 | cos(θ) -sin(θ) 0.0 |
R = | sin(θ) cos(θ) 0.0 |
 | 0.0 0.0 1.0 |

t = < 2.5, 0.0, 0.0 >

This second approach is easier to understand and is less error prone.
Be careful if you want to apply several rotations; rotations are not commutative ! This means than in most cases:
rotA * rotB != rotB * rotA.

Now we apply this matrix on the point cloud source_cloud and we save the result in the
newly created transformed_cloud.

We then visualize the result using the PCLVisualizer. The original point cloud will be
displayed white and the transformed one in red. The coordoniates axis will be displayed.
We also set the background color of the visualizer and the point display size.

12.3. Compiling and running the program

Add the following lines to your CMakeLists.txt file:

After you have made the executable, run it passing a path to a PCD or PLY file.
To reproduce the results shown below, you can download the cube.ply [https://raw.github.com/PointCloudLibrary/pcl/master/test/cube.ply] file:

$./matrix_transform cube.ply

You will see something similar to this:

./matrix_transform cube.ply
[pcl::PLYReader] /home/victor/cube.ply:12: property 'list uint8 uint32 vertex_indices' of element 'face' is not handled
Method #1: using a Matrix4f
 0.707107 -0.707107 0 2.5
 0.707107 0.707107 0 0
 0 0 1 0
 0 0 0 1

Method #2: using an Affine3f
 0.707107 -0.707107 0 2.5
 0.707107 0.707107 0 0
 0 0 1 0
 0 0 0 1

Point cloud colors : white = original point cloud
 red = transformed point cloud

[image: _images/cube_big.png]

12.4. More about transformations

So now you successfully transformed a point cloud using a transformation matrix.

What if you want to transform a single point ? A vector ?

A point is defined in 3D space with its three coordinates; x,y,z (in a cartesian coordinate system).

How can you multiply a vector (with 3 coordinates) with a 4x4 matrix ? You simply can’t ! If you don’t know why please refer to matrix multiplications on wikipedia [https://en.wikipedia.org/wiki/Matrix_multiplication].

We need a vector with 4 components. What do you put in the last component ? It depends on what you want to do:

	If you want to transform a point: put 1 at the end of the vector so that the translation is taken in account.

	If you want to transform the direction of a vector: put 0 at the end of the vector to ignore the translation.

Here’s a quick example, we want to transform the following vector:

[10, 5, 0, 3, 0, -1]

Where the first 3 components defines the origin coordinates and the last 3 components the direction.

This vector starts at point 10, 5, 0 and ends at 13, 5, -1.

This is what you need to do to transform the vector:

[10, 5, 0, 1] * 4x4_transformation_matrix
[3, 0, -1, 0] * 4x4_transformation_matrix

1. Adding your own custom PointT type

The current document explains not only how to add your own PointT point type,
but also what templated point types are in PCL, why do they exist, and how are
they exposed. If you’re already familiar with this information, feel free to
skip to the last part of the document.

Contents

	Adding your own custom PointT type

	Why PointT types

	What PointT types are available in PCL?

	How are the point types exposed?

	How to add a new PointT type

	Example

Note

The current document is valid only for PCL 0.x and 1.x. Note that at the time
of this writing we are expecting things to be changed in PCL 2.x.

PCL comes with a variety of pre-defined point types, ranging from SSE-aligned
structures for XYZ data, to more complex n-dimensional histogram
representations such as PFH (Point Feature Histograms). These types should be
enough to support all the algorithms and methods implemented in PCL. However,
there are cases where users would like to define new types. This document
describes the steps involved in defining your own custom PointT type and making
sure that your project can be compiled successfully and ran.

1.1. Why PointT types

PCL’s PointT legacy goes back to the days where it was a library developed
within ROS [http://www.ros.org]. The consensus then was that a Point Cloud
is a complicated n-D structure that needs to be able to represent different
types of information. However, the user should know and understand what types
of information need to be passed around, in order to make the code easier to
debug, think about optimizations, etc.

One example is represented by simple operations on XYZ data. The most
efficient way for SSE-enabled processors, is to store the 3 dimensions as
floats, followed by an extra float for padding:

	1
2
3
4
5
6
7

	struct PointXYZ
{
 float x;
 float y;
 float z;
 float padding;
};

As an example however, in case an user is looking at compiling PCL on an
embedded platform, adding the extra padding can be a waste of memory.
Therefore, a simpler PointXYZ structure without the last float could be used
instead.

Moreover, if your application requires a PointXYZRGBNormal which contains
XYZ 3D data, RGBA information (colors), and surface normals estimated at
each point, it is trivial to define a structure with all the above. Since all
algorithms in PCL should be templated, there are no other changes required
other than your structure definition.

1.2. What PointT types are available in PCL?

To cover all possible cases that we could think of, we defined a plethora of
point types in PCL. The following might be only a snippet, please see
point_types.hpp [https://github.com/PointCloudLibrary/pcl/blob/master/common/include/pcl/impl/point_types.hpp]
for the complete list.

This list is important, because before defining your own custom type, you need
to understand why the existing types were created they way they were. In
addition, the type that you want, might already be defined for you.

	PointXYZ - Members: float x, y, z;

This is one of the most used data types, as it represents 3D xyz information
only. The 3 floats are padded with an additional float for SSE alignment. The
user can either access points[i].data[0] or points[i].x for accessing
say, the x coordinate.

union
{
 float data[4];
 struct
 {
 float x;
 float y;
 float z;
 };
};

	PointXYZI - Members: float x, y, z, intensity;

Simple XYZ + intensity point type. In an ideal world, these 4 components
would create a single structure, SSE-aligned. However, because the majority
of point operations will either set the last component of the data[4] array
(from the xyz union) to 0 or 1 (for transformations), we cannot make
intensity a member of the same structure, as its contents will be
overwritten. For example, a dot product between two points will set their 4th
component to 0, otherwise the dot product doesn’t make sense, etc.

Therefore for SSE-alignment, we pad intensity with 3 extra floats.
Inefficient in terms of storage, but good in terms of memory alignment.

union
{
 float data[4];
 struct
 {
 float x;
 float y;
 float z;
 };
};
union
{
 struct
 {
 float intensity;
 };
 float data_c[4];
};

	PointXYZRGBA - Members: float x, y, z; std::uint32_t rgba;

Similar to PointXYZI, except rgba contains the RGBA information packed
into an unsigned 32-bit integer. Thanks to the union declaration, it is
also possible to access color channels individually by name.

Note

The nested union declaration provides yet another way to look at the RGBA
data–as a single precision floating point number. This is present for
historical reasons and should not be used in new code.

union
{
 float data[4];
 struct
 {
 float x;
 float y;
 float z;
 };
};
union
{
 union
 {
 struct
 {
 std::uint8_t b;
 std::uint8_t g;
 std::uint8_t r;
 std::uint8_t a;
 };
 float rgb;
 };
 std::uint32_t rgba;
};

	PointXYZRGB - float x, y, z; std::uint32_t rgba;

Same as PointXYZRGBA.

	PointXY - float x, y;

Simple 2D x-y point structure.

struct
{
 float x;
 float y;
};

	InterestPoint - float x, y, z, strength;

Similar to PointXYZI, except strength contains a measure of the strength
of the keypoint.

union
{
 float data[4];
 struct
 {
 float x;
 float y;
 float z;
 };
};
union
{
 struct
 {
 float strength;
 };
 float data_c[4];
};

	Normal - float normal[3], curvature;

One of the other most used data types, the Normal structure represents the
surface normal at a given point, and a measure of curvature (which is
obtained in the same call as a relationship between the eigenvalues of a
surface patch – see the NormalEstimation class API for more information).

Because operation on surface normals are quite common in PCL, we pad the 3
components with a fourth one, in order to be SSE-aligned and computationally
efficient. The user can either access points[i].data_n[0] or
points[i].normal[0] or points[i].normal_x for accessing say, the first
coordinate of the normal vector. Again, curvature cannot be stored in the
same structure as it would be overwritten by operations on the normal data.

union
{
 float data_n[4];
 float normal[3];
 struct
 {
 float normal_x;
 float normal_y;
 float normal_z;
 };
}
union
{
 struct
 {
 float curvature;
 };
 float data_c[4];
};

	PointNormal - float x, y, z; float normal[3], curvature;

A point structure that holds XYZ data, together with surface normals and
curvatures.

union
{
 float data[4];
 struct
 {
 float x;
 float y;
 float z;
 };
};
union
{
 float data_n[4];
 float normal[3];
 struct
 {
 float normal_x;
 float normal_y;
 float normal_z;
 };
};
union
{
 struct
 {
 float curvature;
 };
 float data_c[4];
};

	PointXYZRGBNormal - float x, y, z, normal[3], curvature; std::uint32_t rgba;

A point structure that holds XYZ data, and RGBA colors, together with surface
normals and curvatures.

Note

Despite the name, this point type does contain the alpha color channel.

union
{
 float data[4];
 struct
 {
 float x;
 float y;
 float z;
 };
};
union
{
 float data_n[4];
 float normal[3];
 struct
 {
 float normal_x;
 float normal_y;
 float normal_z;
 };
}
union
{
 struct
 {
 union
 {
 union
 {
 struct
 {
 std::uint8_t b;
 std::uint8_t g;
 std::uint8_t r;
 std::uint8_t a;
 };
 float rgb;
 };
 std::uint32_t rgba;
 };
 float curvature;
 };
 float data_c[4];
};

	PointXYZINormal - float x, y, z, intensity, normal[3], curvature;

A point structure that holds XYZ data, and intensity values, together with
surface normals and curvatures.

union
{
 float data[4];
 struct
 {
 float x;
 float y;
 float z;
 };
};
union
{
 float data_n[4];
 float normal[3];
 struct
 {
 float normal_x;
 float normal_y;
 float normal_z;
 };
}
union
{
 struct
 {
 float intensity;
 float curvature;
 };
 float data_c[4];
};

	PointWithRange - float x, y, z (union with float point[4]), range;

Similar to PointXYZI, except range contains a measure of the distance
from the acquisition viewpoint to the point in the world.

union
{
 float data[4];
 struct
 {
 float x;
 float y;
 float z;
 };
};
union
{
 struct
 {
 float range;
 };
 float data_c[4];
};

	PointWithViewpoint - float x, y, z, vp_x, vp_y, vp_z;

Similar to PointXYZI, except vp_x, vp_y, and vp_z contain the
acquisition viewpoint as a 3D point.

union
{
 float data[4];
 struct
 {
 float x;
 float y;
 float z;
 };
};
union
{
 struct
 {
 float vp_x;
 float vp_y;
 float vp_z;
 };
 float data_c[4];
};

	MomentInvariants - float j1, j2, j3;

Simple point type holding the 3 moment invariants at a surface patch. See
MomentInvariantsEstimation for more information.

struct
{
 float j1, j2, j3;
};

	PrincipalRadiiRSD - float r_min, r_max;

Simple point type holding the 2 RSD radii at a surface patch. See
RSDEstimation for more information.

struct
{
 float r_min, r_max;
};

	Boundary - std::uint8_t boundary_point;

Simple point type holding whether the point is lying on a surface boundary or
not. See BoundaryEstimation for more information.

struct
{
 std::uint8_t boundary_point;
};

	PrincipalCurvatures - float principal_curvature[3], pc1, pc2;

Simple point type holding the principal curvatures of a given point. See
PrincipalCurvaturesEstimation for more information.

struct
{
 union
 {
 float principal_curvature[3];
 struct
 {
 float principal_curvature_x;
 float principal_curvature_y;
 float principal_curvature_z;
 };
 };
 float pc1;
 float pc2;
};

	PFHSignature125 - float pfh[125];

Simple point type holding the PFH (Point Feature Histogram) of a given point.
See PFHEstimation for more information.

struct
{
 float histogram[125];
};

	FPFHSignature33 - float fpfh[33];

Simple point type holding the FPFH (Fast Point Feature Histogram) of a given
point. See FPFHEstimation for more information.

struct
{
 float histogram[33];
};

	VFHSignature308 - float vfh[308];

Simple point type holding the VFH (Viewpoint Feature Histogram) of a given
point. See VFHEstimation for more information.

struct
{
 float histogram[308];
};

	Narf36 - float x, y, z, roll, pitch, yaw; float descriptor[36];

Simple point type holding the NARF (Normally Aligned Radius Feature) of a given
point. See NARFEstimation for more information.

struct
{
 float x, y, z, roll, pitch, yaw;
 float descriptor[36];
};

	BorderDescription - int x, y; BorderTraits traits;

Simple point type holding the border type of a given point. See
BorderEstimation for more information.

struct
{
 int x, y;
 BorderTraits traits;
};

	IntensityGradient - float gradient[3];

Simple point type holding the intensity gradient of a given point. See
IntensityGradientEstimation for more information.

struct
{
 union
 {
 float gradient[3];
 struct
 {
 float gradient_x;
 float gradient_y;
 float gradient_z;
 };
 };
};

	Histogram - float histogram[N];

General purpose n-D histogram placeholder.

template <int N>
struct Histogram
{
 float histogram[N];
};

	PointWithScale - float x, y, z, scale;

Similar to PointXYZI, except scale contains the scale at which a certain
point was considered for a geometric operation (e.g. the radius of the sphere
for its nearest neighbors computation, the window size, etc).

struct
{
 union
 {
 float data[4];
 struct
 {
 float x;
 float y;
 float z;
 };
 };
 float scale;
};

	PointSurfel - float x, y, z, normal[3], rgba, radius, confidence, curvature;

A complex point type containing XYZ data, surface normals, together with RGB
information, scale, confidence, and surface curvature.

union
{
 float data[4];
 struct
 {
 float x;
 float y;
 float z;
 };
};
union
{
 float data_n[4];
 float normal[3];
 struct
 {
 float normal_x;
 float normal_y;
 float normal_z;
 };
};
union
{
 struct
 {
 std::uint32_t rgba;
 float radius;
 float confidence;
 float curvature;
 };
 float data_c[4];
};

1.3. How are the point types exposed?

Because of its large size, and because it’s a template library, including many
PCL algorithms in one source file can slow down the compilation process. At the
time of writing this document, most C++ compilers still haven’t been properly
optimized to deal with large sets of templated files, especially when
optimizations (-O2 or -O3) are involved.

To speed up user code that includes and links against PCL, we are using
explicit template instantiations, by including all possible combinations in
which all algorithms could be called using the already defined point types from
PCL. This means that once PCL is compiled as a library, any user code will not
require to compile templated code, thus speeding up compile time. The trick
involves separating the templated implementations from the headers which
forward declare our classes and methods, and resolving at link time. Here’s a
fictitious example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	// foo.h

#ifndef PCL_FOO_
#define PCL_FOO_

template <typename PointT>
class Foo
{
 public:
 void
 compute (const pcl::PointCloud<PointT> &input,
 pcl::PointCloud<PointT> &output);
}

#endif // PCL_FOO_

The above defines the header file which is usually included by all user code.
As we can see, we’re defining methods and classes, but we’re not implementing
anything yet.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	// impl/foo.hpp

#ifndef PCL_IMPL_FOO_
#define PCL_IMPL_FOO_

#include "foo.h"

template <typename PointT> void
Foo::compute (const pcl::PointCloud<PointT> &input,
 pcl::PointCloud<PointT> &output)
{
 output = input;
}

#endif // PCL_IMPL_FOO_

The above defines the actual template implementation of the method
Foo::compute. This should normally be hidden from user code.

	1
2
3
4
5
6
7
8
9

	// foo.cpp

#include "pcl/point_types.h"
#include "pcl/impl/instantiate.hpp"
#include "foo.h"
#include "impl/foo.hpp"

// Instantiations of specific point types
PCL_INSTANTIATE(Foo, PCL_XYZ_POINT_TYPES));

And finally, the above shows the way the explicit instantiations are done in
PCL. The macro PCL_INSTANTIATE does nothing else but go over a given list of
types and creates an explicit instantiation for each. From pcl/include/pcl/impl/instantiate.hpp:

// PCL_INSTANTIATE: call to instantiate template TEMPLATE for all
// POINT_TYPES

#define PCL_INSTANTIATE_IMPL(r, TEMPLATE, POINT_TYPE) \
 BOOST_PP_CAT(PCL_INSTANTIATE_, TEMPLATE)(POINT_TYPE)

#define PCL_INSTANTIATE(TEMPLATE, POINT_TYPES) \
 BOOST_PP_SEQ_FOR_EACH(PCL_INSTANTIATE_IMPL, TEMPLATE, POINT_TYPES);

Where PCL_XYZ_POINT_TYPES is (from pcl/include/pcl/impl/point_types.hpp):

// Define all point types that include XYZ data
#define PCL_XYZ_POINT_TYPES \
 (pcl::PointXYZ) \
 (pcl::PointXYZI) \
 (pcl::PointXYZRGBA) \
 (pcl::PointXYZRGB) \
 (pcl::InterestPoint) \
 (pcl::PointNormal) \
 (pcl::PointXYZRGBNormal) \
 (pcl::PointXYZINormal) \
 (pcl::PointWithRange) \
 (pcl::PointWithViewpoint) \
 (pcl::PointWithScale)

Basically, if you only want to explicitly instantiate Foo for
pcl::PointXYZ, you don’t need to use the macro, as something as simple as the
following would do:

	1
2
3
4
5
6
7
8

	// foo.cpp

#include "pcl/point_types.h"
#include "pcl/impl/instantiate.hpp"
#include "foo.h"
#include "impl/foo.hpp"

template class Foo<pcl::PointXYZ>;

Note

For more information about explicit instantiations, please see C++ Templates
- The Complete Guide, by David Vandervoorde and Nicolai M. Josuttis.

1.4. How to add a new PointT type

To add a new point type, you first have to define it. For example:

	1
2
3
4

	struct MyPointType
{
 float test;
};

Then, you need to make sure your code includes the template header
implementation of the specific class/algorithm in PCL that you want your new
point type MyPointType to work with. For example, say you want to use
pcl::PassThrough. All you would have to do is:

#define PCL_NO_PRECOMPILE
#include <pcl/filters/passthrough.h>
#include <pcl/filters/impl/passthrough.hpp>

// the rest of the code goes here

If your code is part of the library, which gets used by others, it might also
make sense to try to use explicit instantiations for your MyPointType types,
for any classes that you expose (from PCL our outside PCL).

Note

Starting with PCL-1.7 you need to define PCL_NO_PRECOMPILE before you include
any PCL headers to include the templated algorithms as well.

1.5. Example

The following code snippet example creates a new point type that contains XYZ
data (SSE padded), together with a test float.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	#define PCL_NO_PRECOMPILE
#include <pcl/pcl_macros.h>
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/io/pcd_io.h>

struct MyPointType
{
 PCL_ADD_POINT4D; // preferred way of adding a XYZ+padding
 float test;
 PCL_MAKE_ALIGNED_OPERATOR_NEW // make sure our new allocators are aligned
} EIGEN_ALIGN16; // enforce SSE padding for correct memory alignment

POINT_CLOUD_REGISTER_POINT_STRUCT (MyPointType, // here we assume a XYZ + "test" (as fields)
 (float, x, x)
 (float, y, y)
 (float, z, z)
 (float, test, test)
)

int
main (int argc, char** argv)
{
 pcl::PointCloud<MyPointType> cloud;
 cloud.points.resize (2);
 cloud.width = 2;
 cloud.height = 1;

 cloud.points[0].test = 1;
 cloud.points[1].test = 2;
 cloud.points[0].x = cloud.points[0].y = cloud.points[0].z = 0;
 cloud.points[1].x = cloud.points[1].y = cloud.points[1].z = 3;

 pcl::io::savePCDFile ("test.pcd", cloud);
}

2. Writing a new PCL class

Converting code to a PCL-like mentality/syntax for someone that comes in
contact for the first time with our infrastructure might appear difficult, or
raise certain questions.

This short guide is to serve as both a HowTo and a FAQ for writing new PCL
classes, either from scratch, or by adapting old code.

Besides converting your code, this guide also explains some of the advantages
of contributing your code to an already existing open source project. Here, we
advocate for PCL, but you can certainly apply the same ideology to other
similar projects.

Contents

	Writing a new PCL class

	Advantages: Why contribute?

	Example: a bilateral filter

	Setting up the structure

	bilateral.h

	bilateral.hpp

	bilateral.cpp

	CMakeLists.txt

	Filling in the class structure

	bilateral.cpp

	bilateral.h

	bilateral.hpp

	Taking advantage of other PCL concepts

	Point indices

	Licenses

	Proper naming

	Code comments

	Testing the new class

2.1. Advantages: Why contribute?

The first question that someone might ask and we would like to answer is:

Why contribute to PCL, as in what are its advantages?

This question assumes you’ve already identified that the set of tools and
libraries that PCL has to offer are useful for your project, so you have already
become an user.

Because open source projects are mostly voluntary efforts, usually with
developers geographically distributed around the world, it’s very common that
the development process has a certain incremental, and iterative flavor.
This means that:

	it’s impossible for developers to think ahead of all the possible uses a new
piece of code they write might have, but also…

	figuring out solutions for corner cases and applications where bugs might
occur is hard, and might not be desirable to tackle at the beginning, due to
limited resources (mostly a cost function of free time).

In both cases, everyone has definitely encountered situations where either an
algorithm/method that they need is missing, or an existing one is buggy.
Therefore the next natural step is obvious:

change the existing code to fit your application/problem.

While we’re going to discuss how to do that in the next sections, we would
still like to provide an answer for the first question that we raised, namely
“why contribute?”.

In our opinion, there are many advantages. To quote Eric Raymond’s Linus’s
Law: “given enough eyeballs, all bugs are shallow”. What this means is
that by opening your code to the world, and allowing others to see it, the
chances of it getting fixed and optimized are higher, especially in the
presence of a dynamic community such as the one that PCL has.

In addition to the above, your contribution might enable, amongst many things:

	others to create new work based on your code;

	you to learn about new uses (e.g., thinks that you haven’t thought it could be used when you designed it);

	worry-free maintainership (e.g., you can go away for some time, and then return and see your code still working. Others will take care of adapting it to the newest platforms, newest compilers, etc);

	your reputation in the community to grow - everyone likes free stuff (!).

For most of us, all of the above apply. For others, only some (your mileage
might vary).

2.2. Example: a bilateral filter

To illustrate the code conversion process, we selected the following example:
apply a bilateral filter over intensity data from a given input point cloud,
and save the results to disk.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

	 #include <pcl/point_types.h>
 #include <pcl/io/pcd_io.h>
 #include <pcl/kdtree/kdtree_flann.h>

 typedef pcl::PointXYZI PointT;

 float
 G (float x, float sigma)
 {
 return std::exp (- (x*x)/(2*sigma*sigma));
 }

 int
 main (int argc, char *argv[])
 {
 std::string incloudfile = argv[1];
 std::string outcloudfile = argv[2];
 float sigma_s = atof (argv[3]);
 float sigma_r = atof (argv[4]);

 // Load cloud
 pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PointT>);
 pcl::io::loadPCDFile (incloudfile.c_str (), *cloud);
 int pnumber = (int)cloud->size ();

 // Output Cloud = Input Cloud
 pcl::PointCloud<PointT> outcloud = *cloud;

 // Set up KDTree
 pcl::KdTreeFLANN<PointT>::Ptr tree (new pcl::KdTreeFLANN<PointT>);
 tree->setInputCloud (cloud);

 // Neighbors containers
 std::vector<int> k_indices;
 std::vector<float> k_distances;

 // Main Loop
 for (int point_id = 0; point_id < pnumber; ++point_id)
 {
 float BF = 0;
 float W = 0;

 tree->radiusSearch (point_id, 2 * sigma_s, k_indices, k_distances);

 // For each neighbor
 for (std::size_t n_id = 0; n_id < k_indices.size (); ++n_id)
 {
 float id = k_indices.at (n_id);
 float dist = sqrt (k_distances.at (n_id));
 float intensity_dist = std::abs (cloud->points[point_id].intensity - cloud->points[id].intensity);

 float w_a = G (dist, sigma_s);
 float w_b = G (intensity_dist, sigma_r);
 float weight = w_a * w_b;

 BF += weight * cloud->points[id].intensity;
 W += weight;
 }

 outcloud.points[point_id].intensity = BF / W;
 }

 // Save filtered output
 pcl::io::savePCDFile (outcloudfile.c_str (), outcloud);
 return (0);
 }

	The presented code snippet contains:

	
	an I/O component: lines 21-27 (reading data from disk), and 64 (writing data to disk)

	an initialization component: lines 29-35 (setting up a search method for nearest neighbors using a KdTree)

	the actual algorithmic component: lines 7-11 and 37-61

Our goal here is to convert the algorithm given into an useful PCL class so that it can be reused elsewhere.

2.3. Setting up the structure

Note

If you’re not familiar with the PCL file structure already, please go ahead
and read the PCL C++ Programming Style Guide [http://www.pointclouds.org/documentation/advanced/pcl_style_guide.php] to
familiarize yourself with the concepts.

There’re two different ways we could set up the structure: i) set up the code
separately, as a standalone PCL class, but outside of the PCL code tree; or ii)
set up the files directly in the PCL code tree. Since our assumption is that
the end result will be contributed back to PCL, it’s best to concentrate on the
latter, also because it is a bit more complex (i.e., it involves a few
additional steps). You can obviously repeat these steps with the former case as
well, with the exception that you don’t need the files copied in the PCL tree,
nor you need the fancier cmake logic.

Assuming that we want the new algorithm to be part of the PCL Filtering library, we will begin by creating 3 different files under filters:

	include/pcl/filters/bilateral.h - will contain all definitions;

	include/pcl/filters/impl/bilateral.hpp - will contain the templated implementations;

	src/bilateral.cpp - will contain the explicit template instantiations *.

We also need a name for our new class. Let’s call it BilateralFilter.

	*

	Some PCL filter algorithms provide two implementations: one for PointCloud<T> types and another one operating on legacy PCLPointCloud2 types. This is no longer required.

2.3.1. bilateral.h

As previously mentioned, the bilateral.h header file will contain all the
definitions pertinent to the BilateralFilter class. Here’s a minimal
skeleton:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 #ifndef PCL_FILTERS_BILATERAL_H_
 #define PCL_FILTERS_BILATERAL_H_

 #include <pcl/filters/filter.h>

 namespace pcl
 {
 template<typename PointT>
 class BilateralFilter : public Filter<PointT>
 {
 };
 }

 #endif // PCL_FILTERS_BILATERAL_H_

2.3.2. bilateral.hpp

While we’re at it, let’s set up two skeleton bilateral.hpp and
bilateral.cpp files as well. First, bilateral.hpp:

	1
2
3
4
5
6

	 #ifndef PCL_FILTERS_BILATERAL_IMPL_H_
 #define PCL_FILTERS_BILATERAL_IMPL_H_

 #include <pcl/filters/bilateral.h>

 #endif // PCL_FILTERS_BILATERAL_IMPL_H_

This should be straightforward. We haven’t declared any methods for
BilateralFilter yet, therefore there is no implementation.

2.3.3. bilateral.cpp

Let’s write bilateral.cpp too:

	1
2

	 #include <pcl/filters/bilateral.h>
 #include <pcl/filters/impl/bilateral.hpp>

Because we are writing templated code in PCL (1.x) where the template parameter
is a point type (see Adding your own custom PointT type), we want to explicitly
instantiate the most common use cases in bilateral.cpp, so that users don’t
have to spend extra cycles when compiling code that uses our
BilateralFilter. To do this, we need to access both the header
(bilateral.h) and the implementations (bilateral.hpp).

2.3.4. CMakeLists.txt

Let’s add all the files to the PCL Filtering CMakeLists.txt file, so we can
enable the build.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	 # Find "set (srcs", and add a new entry there, e.g.,
 set (srcs
 src/conditional_removal.cpp
 # ...
 src/bilateral.cpp)
)

 # Find "set (incs", and add a new entry there, e.g.,
 set (incs
 include pcl/${SUBSYS_NAME}/conditional_removal.h
 # ...
 include pcl/${SUBSYS_NAME}/bilateral.h
)

 # Find "set (impl_incs", and add a new entry there, e.g.,
 set (impl_incs
 include/pcl/${SUBSYS_NAME}/impl/conditional_removal.hpp
 # ...
 include/pcl/${SUBSYS_NAME}/impl/bilateral.hpp
)

2.4. Filling in the class structure

If you correctly edited all the files above, recompiling PCL using the new
filter classes in place should work without problems. In this section, we’ll
begin filling in the actual code in each file. Let’s start with the
bilateral.cpp file, as its content is the shortest.

2.4.1. bilateral.cpp

As previously mentioned, we’re going to explicitly instantiate and
precompile a number of templated specializations for the BilateralFilter
class. While this might lead to an increased compilation time for the PCL
Filtering library, it will save users the pain of processing and compiling the
templates on their end, when they use the class in code they write. The
simplest possible way to do this would be to declare each instance that we want
to precompile by hand in the bilateral.cpp file as follows:

	1
2
3
4
5
6
7
8

	 #include <pcl/point_types.h>
 #include <pcl/filters/bilateral.h>
 #include <pcl/filters/impl/bilateral.hpp>

 template class PCL_EXPORTS pcl::BilateralFilter<pcl::PointXYZ>;
 template class PCL_EXPORTS pcl::BilateralFilter<pcl::PointXYZI>;
 template class PCL_EXPORTS pcl::BilateralFilter<pcl::PointXYZRGB>;
 // ...

However, this becomes cumbersome really fast, as the number of point types PCL
supports grows. Maintaining this list up to date in multiple files in PCL is
also painful. Therefore, we are going to use a special macro called
PCL_INSTANTIATE and change the above code as follows:

	1
2
3
4
5
6

	 #include <pcl/point_types.h>
 #include <pcl/impl/instantiate.hpp>
 #include <pcl/filters/bilateral.h>
 #include <pcl/filters/impl/bilateral.hpp>

 PCL_INSTANTIATE(BilateralFilter, PCL_XYZ_POINT_TYPES);

This example, will instantiate a BilateralFilter for all XYZ point types
defined in the point_types.h file (see
:pcl:`PCL_XYZ_POINT_TYPES<PCL_XYZ_POINT_TYPES>` for more information).

By looking closer at the code presented in Example: a bilateral filter, we
notice constructs such as cloud->points[point_id].intensity. This indicates
that our filter expects the presence of an intensity field in the point
type. Because of this, using PCL_XYZ_POINT_TYPES won’t work, as not all the
types defined there have intensity data present. In fact, it’s easy to notice
that only two of the types contain intensity, namely:
:pcl:`PointXYZI<pcl::PointXYZI>` and
:pcl:`PointXYZINormal<pcl::PointXYZINormal>`. We therefore replace
PCL_XYZ_POINT_TYPES and the final bilateral.cpp file becomes:

	1
2
3
4
5
6

	 #include <pcl/point_types.h>
 #include <pcl/impl/instantiate.hpp>
 #include <pcl/filters/bilateral.h>
 #include <pcl/filters/impl/bilateral.hpp>

 PCL_INSTANTIATE(BilateralFilter, (pcl::PointXYZI)(pcl::PointXYZINormal));

Note that at this point we haven’t declared the PCL_INSTANTIATE template for
BilateralFilter, nor did we actually implement the pure virtual functions in
the abstract class :pcl:`pcl::Filter<pcl::Filter>` so attempting to compile the
code will result in errors like:

filters/src/bilateral.cpp:6:32: error: expected constructor, destructor, or type conversion before ‘(’ token

2.4.2. bilateral.h

We begin filling the BilateralFilter class by first declaring the
constructor, and its member variables. Because the bilateral filtering
algorithm has two parameters, we will store these as class members, and
implement setters and getters for them, to be compatible with the PCL 1.x API
paradigms.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	 ...
 namespace pcl
 {
 template<typename PointT>
 class BilateralFilter : public Filter<PointT>
 {
 public:
 BilateralFilter () : sigma_s_ (0),
 sigma_r_ (std::numeric_limits<double>::max ())
 {
 }

 void
 setSigmaS (const double sigma_s)
 {
 sigma_s_ = sigma_s;
 }

 double
 getSigmaS () const
 {
 return (sigma_s_);
 }

 void
 setSigmaR (const double sigma_r)
 {
 sigma_r_ = sigma_r;
 }

 double
 getSigmaR () const
 {
 return (sigma_r_);
 }

 private:
 double sigma_s_;
 double sigma_r_;
 };
 }

 #endif // PCL_FILTERS_BILATERAL_H_

Nothing out of the ordinary so far, except maybe lines 8-9, where we gave some
default values to the two parameters. Because our class inherits from
:pcl:`pcl::Filter<pcl::Filter>`, and that inherits from
:pcl:`pcl::PCLBase<pcl::PCLBase>`, we can make use of the
:pcl:`setInputCloud<pcl::PCLBase::setInputCloud>` method to pass the input data
to our algorithm (stored as :pcl:`input_<pcl::PCLBase::input_>`). We therefore
add an using declaration as follows:

	1
2
3
4
5
6
7
8

	 ...
 template<typename PointT>
 class BilateralFilter : public Filter<PointT>
 {
 using Filter<PointT>::input_;
 public:
 BilateralFilter () : sigma_s_ (0),
 ...

This will make sure that our class has access to the member variable input_
without typing the entire construct. Next, we observe that each class that
inherits from :pcl:`pcl::Filter<pcl::Filter>` must inherit a
:pcl:`applyFilter<pcl::Filter::applyFilter>` method. We therefore define:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 ...
 using Filter<PointT>::input_;
 typedef typename Filter<PointT>::PointCloud PointCloud;

 public:
 BilateralFilter () : sigma_s_ (0),
 sigma_r_ (std::numeric_limits<double>::max ())
 {
 }

 void
 applyFilter (PointCloud &output);
 ...

The implementation of applyFilter will be given in the bilateral.hpp file
later. Line 3 constructs a typedef so that we can use the type PointCloud
without typing the entire construct.

Looking at the original code from section Example: a bilateral filter, we
notice that the algorithm consists of applying the same operation to every
point in the cloud. To keep the applyFilter call clean, we therefore define
method called computePointWeight whose implementation will contain the corpus
defined in between lines 45-58:

	1
2
3
4
5
6
7

	 ...
 void
 applyFilter (PointCloud &output);

 double
 computePointWeight (const int pid, const std::vector<int> &indices, const std::vector<float> &distances);
 ...

In addition, we notice that lines 29-31 and 43 from section
Example: a bilateral filter construct a :pcl:`KdTree<pcl::KdTree>`
structure for obtaining the nearest neighbors for a given point. We therefore
add:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	 #include <pcl/kdtree/kdtree.h>
 ...
 using Filter<PointT>::input_;
 typedef typename Filter<PointT>::PointCloud PointCloud;
 typedef typename pcl::KdTree<PointT>::Ptr KdTreePtr;

 public:
 ...

 void
 setSearchMethod (const KdTreePtr &tree)
 {
 tree_ = tree;
 }

 private:
 ...
 KdTreePtr tree_;
 ...

Finally, we would like to add the kernel method (G (float x, float sigma))
inline so that we speed up the computation of the filter. Because the method is
only useful within the context of the algorithm, we will make it private. The
header file becomes:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

	 #ifndef PCL_FILTERS_BILATERAL_H_
 #define PCL_FILTERS_BILATERAL_H_

 #include <pcl/filters/filter.h>
 #include <pcl/kdtree/kdtree.h>

 namespace pcl
 {
 template<typename PointT>
 class BilateralFilter : public Filter<PointT>
 {
 using Filter<PointT>::input_;
 typedef typename Filter<PointT>::PointCloud PointCloud;
 typedef typename pcl::KdTree<PointT>::Ptr KdTreePtr;

 public:
 BilateralFilter () : sigma_s_ (0),
 sigma_r_ (std::numeric_limits<double>::max ())
 {
 }

 void
 applyFilter (PointCloud &output);

 double
 computePointWeight (const int pid, const std::vector<int> &indices, const std::vector<float> &distances);

 void
 setSigmaS (const double sigma_s)
 {
 sigma_s_ = sigma_s;
 }

 double
 getSigmaS () const
 {
 return (sigma_s_);
 }

 void
 setSigmaR (const double sigma_r)
 {
 sigma_r_ = sigma_r;
 }

 double
 getSigmaR () const
 {
 return (sigma_r_);
 }

 void
 setSearchMethod (const KdTreePtr &tree)
 {
 tree_ = tree;
 }

 private:

 inline double
 kernel (double x, double sigma)
 {
 return (std::exp (- (x*x)/(2*sigma*sigma)));
 }

 double sigma_s_;
 double sigma_r_;
 KdTreePtr tree_;
 };
 }

 #endif // PCL_FILTERS_BILATERAL_H_

2.4.3. bilateral.hpp

There’re two methods that we need to implement here, namely applyFilter and
computePointWeight.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

	 template <typename PointT> double
 pcl::BilateralFilter<PointT>::computePointWeight (const int pid,
 const std::vector<int> &indices,
 const std::vector<float> &distances)
 {
 double BF = 0, W = 0;

 // For each neighbor
 for (std::size_t n_id = 0; n_id < indices.size (); ++n_id)
 {
 double id = indices[n_id];
 double dist = std::sqrt (distances[n_id]);
 double intensity_dist = std::abs (input_->points[pid].intensity - input_->points[id].intensity);

 double weight = kernel (dist, sigma_s_) * kernel (intensity_dist, sigma_r_);

 BF += weight * input_->points[id].intensity;
 W += weight;
 }
 return (BF / W);
 }

 template <typename PointT> void
 pcl::BilateralFilter<PointT>::applyFilter (PointCloud &output)
 {
 tree_->setInputCloud (input_);

 std::vector<int> k_indices;
 std::vector<float> k_distances;

 output = *input_;

 for (std::size_t point_id = 0; point_id < input_->points.size (); ++point_id)
 {
 tree_->radiusSearch (point_id, sigma_s_ * 2, k_indices, k_distances);

 output.points[point_id].intensity = computePointWeight (point_id, k_indices, k_distances);
 }

 }

The computePointWeight method should be straightforward as it’s almost
identical to lines 45-58 from section Example: a bilateral filter. We
basically pass in a point index that we want to compute the intensity weight
for, and a set of neighboring points with distances.

In applyFilter, we first set the input data in the tree, copy all the input
data into the output, and then proceed at computing the new weighted point
intensities.

Looking back at Filling in the class structure, it’s now time to declare the PCL_INSTANTIATE
entry for the class:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	 #ifndef PCL_FILTERS_BILATERAL_IMPL_H_
 #define PCL_FILTERS_BILATERAL_IMPL_H_

 #include <pcl/filters/bilateral.h>

 ...

 #define PCL_INSTANTIATE_BilateralFilter(T) template class PCL_EXPORTS pcl::BilateralFilter<T>;

 #endif // PCL_FILTERS_BILATERAL_IMPL_H_

One additional thing that we can do is error checking on:

	whether the two sigma_s_ and sigma_r_ parameters have been given;

	whether the search method object (i.e., tree_) has been set.

For the former, we’re going to check the value of sigma_s_, which was set to
a default of 0, and has a critical importance for the behavior of the algorithm
(it basically defines the size of the support region). Therefore, if at the
execution of the code, its value is still 0, we will print an error using the
:pcl:`PCL_ERROR<PCL_ERROR>` macro, and return.

In the case of the search method, we can either do the same, or be clever and
provide a default option for the user. The best default options are:

	use an organized search method via :pcl:`pcl::OrganizedNeighbor<pcl::OrganizedNeighbor>` if the point cloud is organized;

	use a general purpose kdtree via :pcl:`pcl::KdTreeFLANN<pcl::KdTreeFLANN>` if the point cloud is unorganized.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	 #include <pcl/kdtree/kdtree_flann.h>
 #include <pcl/kdtree/organized_data.h>

 ...
 template <typename PointT> void
 pcl::BilateralFilter<PointT>::applyFilter (PointCloud &output)
 {
 if (sigma_s_ == 0)
 {
 PCL_ERROR ("[pcl::BilateralFilter::applyFilter] Need a sigma_s value given before continuing.\n");
 return;
 }
 if (!tree_)
 {
 if (input_->isOrganized ())
 tree_.reset (new pcl::OrganizedNeighbor<PointT> ());
 else
 tree_.reset (new pcl::KdTreeFLANN<PointT> (false));
 }
 tree_->setInputCloud (input_);
 ...

The implementation file header thus becomes:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

	 #ifndef PCL_FILTERS_BILATERAL_IMPL_H_
 #define PCL_FILTERS_BILATERAL_IMPL_H_

 #include <pcl/filters/bilateral.h>
 #include <pcl/kdtree/kdtree_flann.h>
 #include <pcl/kdtree/organized_data.h>

 template <typename PointT> double
 pcl::BilateralFilter<PointT>::computePointWeight (const int pid,
 const std::vector<int> &indices,
 const std::vector<float> &distances)
 {
 double BF = 0, W = 0;

 // For each neighbor
 for (std::size_t n_id = 0; n_id < indices.size (); ++n_id)
 {
 double id = indices[n_id];
 double dist = std::sqrt (distances[n_id]);
 double intensity_dist = std::abs (input_->points[pid].intensity - input_->points[id].intensity);

 double weight = kernel (dist, sigma_s_) * kernel (intensity_dist, sigma_r_);

 BF += weight * input_->points[id].intensity;
 W += weight;
 }
 return (BF / W);
 }

 template <typename PointT> void
 pcl::BilateralFilter<PointT>::applyFilter (PointCloud &output)
 {
 if (sigma_s_ == 0)
 {
 PCL_ERROR ("[pcl::BilateralFilter::applyFilter] Need a sigma_s value given before continuing.\n");
 return;
 }
 if (!tree_)
 {
 if (input_->isOrganized ())
 tree_.reset (new pcl::OrganizedNeighbor<PointT> ());
 else
 tree_.reset (new pcl::KdTreeFLANN<PointT> (false));
 }
 tree_->setInputCloud (input_);

 std::vector<int> k_indices;
 std::vector<float> k_distances;

 output = *input_;

 for (std::size_t point_id = 0; point_id < input_->points.size (); ++point_id)
 {
 tree_->radiusSearch (point_id, sigma_s_ * 2, k_indices, k_distances);

 output.points[point_id].intensity = computePointWeight (point_id, k_indices, k_distances);
 }
 }

 #define PCL_INSTANTIATE_BilateralFilter(T) template class PCL_EXPORTS pcl::BilateralFilter<T>;

 #endif // PCL_FILTERS_BILATERAL_IMPL_H_

2.5. Taking advantage of other PCL concepts

2.5.1. Point indices

The standard way of passing point cloud data into PCL algorithms is via
:pcl:`setInputCloud<pcl::PCLBase::setInputCloud>` calls. In addition, PCL also
defines a way to define a region of interest / list of point indices that the
algorithm should operate on, rather than the entire cloud, via
:pcl:`setIndices<pcl::PCLBase::setIndices>`.

All classes inheriting from :pcl:`PCLBase<pcl::PCLBase>` exhbit the following
behavior: in case no set of indices is given by the user, a fake one is created
once and used for the duration of the algorithm. This means that we could
easily change the implementation code above to operate on a <cloud, indices>
tuple, which has the added advantage that if the user does pass a set of
indices, only those will be used, and if not, the entire cloud will be used.

The new bilateral.hpp class thus becomes:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	 #include <pcl/kdtree/kdtree_flann.h>
 #include <pcl/kdtree/organized_data.h>

 ...
 template <typename PointT> void
 pcl::BilateralFilter<PointT>::applyFilter (PointCloud &output)
 {
 if (sigma_s_ == 0)
 {
 PCL_ERROR ("[pcl::BilateralFilter::applyFilter] Need a sigma_s value given before continuing.\n");
 return;
 }
 if (!tree_)
 {
 if (input_->isOrganized ())
 tree_.reset (new pcl::OrganizedNeighbor<PointT> ());
 else
 tree_.reset (new pcl::KdTreeFLANN<PointT> (false));
 }
 tree_->setInputCloud (input_);
 ...

The implementation file header thus becomes:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

	 #ifndef PCL_FILTERS_BILATERAL_IMPL_H_
 #define PCL_FILTERS_BILATERAL_IMPL_H_

 #include <pcl/filters/bilateral.h>
 #include <pcl/kdtree/kdtree_flann.h>
 #include <pcl/kdtree/organized_data.h>

 template <typename PointT> double
 pcl::BilateralFilter<PointT>::computePointWeight (const int pid,
 const std::vector<int> &indices,
 const std::vector<float> &distances)
 {
 double BF = 0, W = 0;

 // For each neighbor
 for (std::size_t n_id = 0; n_id < indices.size (); ++n_id)
 {
 double id = indices[n_id];
 double dist = std::sqrt (distances[n_id]);
 double intensity_dist = std::abs (input_->points[pid].intensity - input_->points[id].intensity);

 double weight = kernel (dist, sigma_s_) * kernel (intensity_dist, sigma_r_);

 BF += weight * input_->points[id].intensity;
 W += weight;
 }
 return (BF / W);
 }

 template <typename PointT> void
 pcl::BilateralFilter<PointT>::applyFilter (PointCloud &output)
 {
 if (sigma_s_ == 0)
 {
 PCL_ERROR ("[pcl::BilateralFilter::applyFilter] Need a sigma_s value given before continuing.\n");
 return;
 }
 if (!tree_)
 {
 if (input_->isOrganized ())
 tree_.reset (new pcl::OrganizedNeighbor<PointT> ());
 else
 tree_.reset (new pcl::KdTreeFLANN<PointT> (false));
 }
 tree_->setInputCloud (input_);

 std::vector<int> k_indices;
 std::vector<float> k_distances;

 output = *input_;

 for (std::size_t i = 0; i < indices_->size (); ++i)
 {
 tree_->radiusSearch ((*indices_)[i], sigma_s_ * 2, k_indices, k_distances);

 output.points[(*indices_)[i]].intensity = computePointWeight ((*indices_)[i], k_indices, k_distances);
 }
 }

 #define PCL_INSTANTIATE_BilateralFilter(T) template class PCL_EXPORTS pcl::BilateralFilter<T>;

 #endif // PCL_FILTERS_BILATERAL_IMPL_H_

To make :pcl:`indices_<pcl::PCLBase::indices_>` work without typing the full
construct, we need to add a new line to bilateral.h that specifies the class
where indices_ is declared:

	1
2
3
4
5
6
7
8
9

	 ...
 template<typename PointT>
 class BilateralFilter : public Filter<PointT>
 {
 using Filter<PointT>::input_;
 using Filter<PointT>::indices_;
 public:
 BilateralFilter () : sigma_s_ (0),
 ...

2.5.2. Licenses

It is advised that each file contains a license that describes the author of
the code. This is very useful for our users that need to understand what sort
of restrictions are they bound to when using the code. PCL is 100% BSD
licensed, and we insert the corpus of the license as a C++ comment in the
file, as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	 /*
 * Software License Agreement (BSD License)
 *
 * Point Cloud Library (PCL) - www.pointclouds.org
 * Copyright (c) 2010-2011, Willow Garage, Inc.
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following
 * disclaimer in the documentation and/or other materials provided
 * with the distribution.
 * * Neither the name of Willow Garage, Inc. nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 */

An additional like can be inserted if additional copyright is needed (or the
original copyright can be changed):

	1

	 * Copyright (c) XXX, respective authors.

2.5.3. Proper naming

We wrote the tutorial so far by using silly named setters and getters in our
example, like setSigmaS or setSigmaR. In reality, we would like to use a
better naming scheme, that actually represents what the parameter is doing. In
a final version of the code we could therefore rename the setters and getters
to set/getHalfSize and set/getStdDev or something similar.

2.5.4. Code comments

PCL is trying to maintain a high standard with respect to user and API
documentation. This sort of Doxygen documentation has been stripped from the
examples shown above. In reality, we would have had the bilateral.h header
class look like:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

	 /*
 * Software License Agreement (BSD License)
 *
 * Point Cloud Library (PCL) - www.pointclouds.org
 * Copyright (c) 2010-2011, Willow Garage, Inc.
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following
 * disclaimer in the documentation and/or other materials provided
 * with the distribution.
 * * Neither the name of Willow Garage, Inc. nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 */

 #ifndef PCL_FILTERS_BILATERAL_H_
 #define PCL_FILTERS_BILATERAL_H_

 #include <pcl/filters/filter.h>
 #include <pcl/kdtree/kdtree.h>

 namespace pcl
 {
 /** \brief A bilateral filter implementation for point cloud data. Uses the intensity data channel.
 * \note For more information please see
 * C. Tomasi and R. Manduchi. Bilateral Filtering for Gray and Color Images.
 * In Proceedings of the IEEE International Conference on Computer Vision,
 * 1998.
 * \author Luca Penasa
 */
 template<typename PointT>
 class BilateralFilter : public Filter<PointT>
 {
 using Filter<PointT>::input_;
 using Filter<PointT>::indices_;
 typedef typename Filter<PointT>::PointCloud PointCloud;
 typedef typename pcl::KdTree<PointT>::Ptr KdTreePtr;

 public:
 /** \brief Constructor.
 * Sets \ref sigma_s_ to 0 and \ref sigma_r_ to MAXDBL
 */
 BilateralFilter () : sigma_s_ (0),
 sigma_r_ (std::numeric_limits<double>::max ())
 {
 }

 /** \brief Filter the input data and store the results into output
 * \param[out] output the resultant point cloud message
 */
 void
 applyFilter (PointCloud &output);

 /** \brief Compute the intensity average for a single point
 * \param[in] pid the point index to compute the weight for
 * \param[in] indices the set of nearest neighor indices
 * \param[in] distances the set of nearest neighbor distances
 * \return the intensity average at a given point index
 */
 double
 computePointWeight (const int pid, const std::vector<int> &indices, const std::vector<float> &distances);

 /** \brief Set the half size of the Gaussian bilateral filter window.
 * \param[in] sigma_s the half size of the Gaussian bilateral filter window to use
 */
 inline void
 setHalfSize (const double sigma_s)
 {
 sigma_s_ = sigma_s;
 }

 /** \brief Get the half size of the Gaussian bilateral filter window as set by the user. */
 double
 getHalfSize () const
 {
 return (sigma_s_);
 }

 /** \brief Set the standard deviation parameter
 * \param[in] sigma_r the new standard deviation parameter
 */
 void
 setStdDev (const double sigma_r)
 {
 sigma_r_ = sigma_r;
 }

 /** \brief Get the value of the current standard deviation parameter of the bilateral filter. */
 double
 getStdDev () const
 {
 return (sigma_r_);
 }

 /** \brief Provide a pointer to the search object.
 * \param[in] tree a pointer to the spatial search object.
 */
 void
 setSearchMethod (const KdTreePtr &tree)
 {
 tree_ = tree;
 }

 private:

 /** \brief The bilateral filter Gaussian distance kernel.
 * \param[in] x the spatial distance (distance or intensity)
 * \param[in] sigma standard deviation
 */
 inline double
 kernel (double x, double sigma)
 {
 return (std::exp (- (x*x)/(2*sigma*sigma)));
 }

 /** \brief The half size of the Gaussian bilateral filter window (e.g., spatial extents in Euclidean). */
 double sigma_s_;
 /** \brief The standard deviation of the bilateral filter (e.g., standard deviation in intensity). */
 double sigma_r_;

 /** \brief A pointer to the spatial search object. */
 KdTreePtr tree_;
 };
 }

 #endif // PCL_FILTERS_BILATERAL_H_

And the bilateral.hpp likes:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112

	 /*
 * Software License Agreement (BSD License)
 *
 * Point Cloud Library (PCL) - www.pointclouds.org
 * Copyright (c) 2010-2011, Willow Garage, Inc.
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following
 * disclaimer in the documentation and/or other materials provided
 * with the distribution.
 * * Neither the name of Willow Garage, Inc. nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 */

 #ifndef PCL_FILTERS_BILATERAL_IMPL_H_
 #define PCL_FILTERS_BILATERAL_IMPL_H_

 #include <pcl/filters/bilateral.h>
 #include <pcl/kdtree/kdtree_flann.h>
 #include <pcl/kdtree/organized_data.h>

 //
 template <typename PointT> double
 pcl::BilateralFilter<PointT>::computePointWeight (const int pid,
 const std::vector<int> &indices,
 const std::vector<float> &distances)
 {
 double BF = 0, W = 0;

 // For each neighbor
 for (std::size_t n_id = 0; n_id < indices.size (); ++n_id)
 {
 double id = indices[n_id];
 // Compute the difference in intensity
 double intensity_dist = std::abs (input_->points[pid].intensity - input_->points[id].intensity);

 // Compute the Gaussian intensity weights both in Euclidean and in intensity space
 double dist = std::sqrt (distances[n_id]);
 double weight = kernel (dist, sigma_s_) * kernel (intensity_dist, sigma_r_);

 // Calculate the bilateral filter response
 BF += weight * input_->points[id].intensity;
 W += weight;
 }
 return (BF / W);
 }

 //
 template <typename PointT> void
 pcl::BilateralFilter<PointT>::applyFilter (PointCloud &output)
 {
 // Check if sigma_s has been given by the user
 if (sigma_s_ == 0)
 {
 PCL_ERROR ("[pcl::BilateralFilter::applyFilter] Need a sigma_s value given before continuing.\n");
 return;
 }
 // In case a search method has not been given, initialize it using some defaults
 if (!tree_)
 {
 // For organized datasets, use an OrganizedNeighbor
 if (input_->isOrganized ())
 tree_.reset (new pcl::OrganizedNeighbor<PointT> ());
 // For unorganized data, use a FLANN kdtree
 else
 tree_.reset (new pcl::KdTreeFLANN<PointT> (false));
 }
 tree_->setInputCloud (input_);

 std::vector<int> k_indices;
 std::vector<float> k_distances;

 // Copy the input data into the output
 output = *input_;

 // For all the indices given (equal to the entire cloud if none given)
 for (std::size_t i = 0; i < indices_->size (); ++i)
 {
 // Perform a radius search to find the nearest neighbors
 tree_->radiusSearch ((*indices_)[i], sigma_s_ * 2, k_indices, k_distances);

 // Overwrite the intensity value with the computed average
 output.points[(*indices_)[i]].intensity = computePointWeight ((*indices_)[i], k_indices, k_distances);
 }
 }

 #define PCL_INSTANTIATE_BilateralFilter(T) template class PCL_EXPORTS pcl::BilateralFilter<T>;

 #endif // PCL_FILTERS_BILATERAL_IMPL_H_

2.6. Testing the new class

Testing the new class is easy. We’ll take the first code snippet example as
shown above, strip the algorithm, and make it use the pcl::BilateralFilter
class instead:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	 #include <pcl/point_types.h>
 #include <pcl/io/pcd_io.h>
 #include <pcl/kdtree/kdtree_flann.h>
 #include <pcl/filters/bilateral.h>

 typedef pcl::PointXYZI PointT;

 int
 main (int argc, char *argv[])
 {
 std::string incloudfile = argv[1];
 std::string outcloudfile = argv[2];
 float sigma_s = atof (argv[3]);
 float sigma_r = atof (argv[4]);

 // Load cloud
 pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PointT>);
 pcl::io::loadPCDFile (incloudfile.c_str (), *cloud);

 pcl::PointCloud<PointT> outcloud;

 // Set up KDTree
 pcl::KdTreeFLANN<PointT>::Ptr tree (new pcl::KdTreeFLANN<PointT>);

 pcl::BilateralFilter<PointT> bf;
 bf.setInputCloud (cloud);
 bf.setSearchMethod (tree);
 bf.setHalfSize (sigma_s);
 bf.setStdDev (sigma_r);
 bf.filter (outcloud);

 // Save filtered output
 pcl::io::savePCDFile (outcloudfile.c_str (), outcloud);
 return (0);
 }

1. How 3D Features work in PCL

This document presents an introduction to the 3D feature estimation
methodologies in PCL, and serves as a guide for users or developers that are
interested in the internals of the pcl::Feature class.

Contents

	How 3D Features work in PCL

	Theoretical primer

	Terminology

	How to pass the input

	An example for normal estimation

1.1. Theoretical primer

From [RusuDissertation]:

In their native representation, points as defined in the concept of 3D mapping systems are simply represented using their Cartesian coordinates x, y, z, with respect to a given origin. Assuming that the origin of the coordinate system does not change over time, there could be two points p1 and p2 , acquired at t1 and t2 , having the same coordinates. Comparing these points however is an ill-posed problem, because even though they are equal with respect to some distance measure (e.g. Euclidean metric), they could be sampled on completely different surfaces, and thus represent totally different information when taken together with the other surrounding points in their vicinity. That is because there are no guarantees that the world has not changed between t1 and t2. Some acquisition devices might provide extra information for a sampled point, such as an intensity or surface remission value, or even a color, however that does not solve the problem completely and the comparison remains ambiguous.

Applications which need to compare points for various reasons require better characteristics and metrics to be able to distinguish between geometric surfaces. The concept of a 3D point as a singular entity with Cartesian coordinates therefore disappears, and a new concept, that of local descriptor takes its place. The literature is abundant of different naming schemes
describing the same conceptualization, such as shape descriptors or geometric features but for the remaining of this document they will be referred to as point feature representations.

…

By including the surrounding neighbors, the underlying sampled surface geometry can be inferred and captured in the feature formulation, which contributes to solving the ambiguity comparison problem. Ideally, the resultant features would be very similar (with respect to some metric) for points residing on the same or similar surfaces, and different for points found on different surfaces, as shown in the figure below. A good point feature representation distinguishes itself from a bad one, by being able to capture the same local surface characteristics in the presence of:

	rigid transformations - that is, 3D rotations and 3D translations in the data should not influence the resultant feature vector F estimation;

	varying sampling density - in principle, a local surface patch sampled more or less densely should have the same feature vector signature;

	noise - the point feature representation must retain the same or very similar values in its feature vector in the presence of mild noise in the data.

[image: _images/good_features.jpg]

In general, PCL features use approximate methods to compute the nearest neighbors of a query point, using fast kd-tree queries. There are two types of queries that we’re interested in:

	determine the k (user given parameter) neighbors of a query point (also known as k-search);

	determine all the neighbors of a query point within a sphere of radius r (also known as radius-search).

Note

For a discussion on what the right k or r values should be, please see [RusuDissertation].

1.2. Terminology

For the reminder of this article, we will make certain abbreviations and
introduce certain notations, to simplify the in-text explanations. Please see
the table below for a reference on each of the terms used.

1.3. How to pass the input

As almost all classes in PCL that inherit from the base pcl::PCLBase class,
the pcl::Feature class accepts input data in two different ways:

	an entire point cloud dataset, given via setInputCloud (PointCloudConstPtr &) - mandatory

Any feature estimation class with attempt to estimate a feature at every point in the given input cloud.

	a subset of a point cloud dataset, given via setInputCloud (PointCloudConstPtr &) and setIndices (IndicesConstPtr &) - optional

Any feature estimation class will attempt to estimate a feature at every point in the given input cloud that has an index in the given indices list. By default, if no set of indices is given, all points in the cloud will be considered.*

In addition, the set of point neighbors to be used, can be specified through an additional call, setSearchSurface (PointCloudConstPtr &). This call is optional, and when the search surface is not given, the input point cloud dataset is used instead by default.

Because setInputCloud() is always required, there are up to four combinations that we can create using <setInputCloud(), setIndices(), setSearchSurface()>. Say we have two point clouds, P={p_1, p_2, …p_n} and Q={q_1, q_2, …, q_n}. The image below presents all four cases:

[image: _images/features_input_explained.png]

	setIndices() = false, setSearchSurface() = false - this is without a doubt the most used case in PCL, where the user is just feeding in a single PointCloud dataset and expects a certain feature estimated at all the points in the cloud.

Since we do not expect to maintain different implementation copies based on whether a set of indices and/or the search surface is given, whenever indices = false, PCL creates a set of internal indices (as a std::vector<int>) that basically point to the entire dataset (indices=1..N, where N is the number of points in the cloud).

In the figure above, this corresponds to the leftmost case. First, we estimate the nearest neighbors of p_1, then the nearest neighbors of p_2, and so on, until we exhaust all the points in P.

	setIndices() = true, setSearchSurface() = false - as previously mentioned, the feature estimation method will only compute features for those points which have an index in the given indices vector;

In the figure above, this corresponds to the second case. Here, we assume that p_2’s index is not part of the indices vector given, so no neighbors or features will be estimated at p2.

	setIndices() = false, setSearchSurface() = true - as in the first case, features will be estimated for all points given as input, but, the underlying neighboring surface given in setSearchSurface() will be used to obtain nearest neighbors for the input points, rather than the input cloud itself;

In the figure above, this corresponds to the third case. If Q={q_1, q_2} is another cloud given as input, different than P, and P is the search surface for Q, then the neighbors of q_1 and q_2 will be computed from P.

	setIndices() = true, setSearchSurface() = true - this is probably the rarest case, where both indices and a search surface is given. In this case, features will be estimated for only a subset from the <input, indices> pair, using the search surface information given in setSearchSurface().

Finally, in the figure above, this corresponds to the last (rightmost) case. Here, we assume that q_2’s index is not part of the indices vector given for Q, so no neighbors or features will be estimated at q2.

The most useful example when setSearchSurface() should be used, is when we have a very dense input dataset, but we do not want to estimate features at all the points in it, but rather at some keypoints discovered using the methods in pcl_keypoints, or at a downsampled version of the cloud (e.g., obtained using a pcl::VoxelGrid<T> filter). In this case, we pass the downsampled/keypoints input via setInputCloud(), and the original data as setSearchSurface().

1.4. An example for normal estimation

Once determined, the neighboring points of a query point can be used to estimate a local feature representation that captures the geometry of the underlying sampled surface around the query point. An important problem in describing the geometry of the surface is to first infer its orientation in a coordinate system, that is, estimate its normal. Surface normals are important properties of a surface and are heavily used in many areas such as computer graphics applications to apply the correct light sources that generate shadings and other visual effects (See [RusuDissertation] for more information).

The following code snippet will estimate a set of surface normals for all the points in the input dataset.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	#include <pcl/point_types.h>
#include <pcl/features/normal_3d.h>

{
 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);

 ... read, pass in or create a point cloud ...

 // Create the normal estimation class, and pass the input dataset to it
 pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
 ne.setInputCloud (cloud);

 // Create an empty kdtree representation, and pass it to the normal estimation object.
 // Its content will be filled inside the object, based on the given input dataset (as no other search surface is given).
 pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ> ());
 ne.setSearchMethod (tree);

 // Output datasets
 pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>);

 // Use all neighbors in a sphere of radius 3cm
 ne.setRadiusSearch (0.03);

 // Compute the features
 ne.compute (*cloud_normals);

 // cloud_normals->points.size () should have the same size as the input cloud->points.size ()
}

The following code snippet will estimate a set of surface normals for a subset of the points in the input dataset.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	#include <pcl/point_types.h>
#include <pcl/features/normal_3d.h>

{
 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);

 ... read, pass in or create a point cloud ...

 // Create a set of indices to be used. For simplicity, we're going to be using the first 10% of the points in cloud
 std::vector<int> indices (std::floor (cloud->points.size () / 10));
 for (std::size_t i = 0; i < indices.size (); ++i) indices[i] = i;

 // Create the normal estimation class, and pass the input dataset to it
 pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
 ne.setInputCloud (cloud);

 // Pass the indices
 pcl::shared_ptr<std::vector<int> > indicesptr (new std::vector<int> (indices));
 ne.setIndices (indicesptr);

 // Create an empty kdtree representation, and pass it to the normal estimation object.
 // Its content will be filled inside the object, based on the given input dataset (as no other search surface is given).
 pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ> ());
 ne.setSearchMethod (tree);

 // Output datasets
 pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>);

 // Use all neighbors in a sphere of radius 3cm
 ne.setRadiusSearch (0.03);

 // Compute the features
 ne.compute (*cloud_normals);

 // cloud_normals->points.size () should have the same size as the input indicesptr->size ()
}

Finally, the following code snippet will estimate a set of surface normals for all the points in the input dataset, but will estimate their nearest neighbors using another dataset. As previously mentioned, a good usecase for this is when the input is a downsampled version of the surface.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	#include <pcl/point_types.h>
#include <pcl/features/normal_3d.h>

{
 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_downsampled (new pcl::PointCloud<pcl::PointXYZ>);

 ... read, pass in or create a point cloud ...

 ... create a downsampled version of it ...

 // Create the normal estimation class, and pass the input dataset to it
 pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
 ne.setInputCloud (cloud_downsampled);

 // Pass the original data (before downsampling) as the search surface
 ne.setSearchSurface (cloud);

 // Create an empty kdtree representation, and pass it to the normal estimation object.
 // Its content will be filled inside the object, based on the given surface dataset.
 pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ> ());
 ne.setSearchMethod (tree);

 // Output datasets
 pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>);

 // Use all neighbors in a sphere of radius 3cm
 ne.setRadiusSearch (0.03);

 // Compute the features
 ne.compute (*cloud_normals);

 // cloud_normals->points.size () should have the same size as the input cloud_downsampled->points.size ()
}

	RusuDissertation(1,2,3)

	http://mediatum.ub.tum.de/doc/800632/941254.pdf

Note

@PhDThesis{RusuDoctoralDissertation,
author = {Radu Bogdan Rusu},
title = {Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments},
school = {Computer Science department, Technische Universitaet Muenchen, Germany},
year = {2009},
month = {October}
}

Index

Robust pose estimation of rigid objects

In this tutorial, we show how to find the alignment pose of a rigid object in a scene with clutter and occlusions.

Contents

	Robust pose estimation of rigid objects

	The code

	The explanation

	Compiling and running the program

The code

First, download the test models: object and scene.

Next, copy and paste the following code into your editor and save it as alignment_prerejective.cpp (or download the source file here).

The explanation

We start by defining convenience types in order not to clutter the code.

Then we instantiate the necessary data containers, check the input arguments and load the object and scene point clouds. Although we have defined the basic point type to contain normals, we only have those in advance for the object (which is often the case). We will estimate the normal information for the scene below.

To speed up processing, we use PCL’s :pcl:`VoxelGrid <pcl::VoxelGrid>` class to downsample both the object and the scene point clouds to a resolution of 5 mm.

The missing surface normals for the scene are now estimated using PCL’s :pcl:`NormalEstimationOMP <pcl::NormalEstimationOMP>`. The surface normals are required for computing the features below used for matching.

For each point in the downsampled point clouds, we now use PCL’s :pcl:`FPFHEstimationOMP <pcl::FPFHEstimationOMP>` class to compute Fast Point Feature Histogram (FPFH) descriptors used for matching during the alignment process.

We are now ready to setup the alignment process. We use the class :pcl:`SampleConsensusPrerejective <pcl::SampleConsensusPrerejective>`, which implements an efficient RANSAC pose estimation loop. This is achieved by early elimination of bad pose hypothesis using the class :pcl:`CorrespondenceRejectorPoly <pcl::registration::CorrespondenceRejectorPoly>`.

Note

Apart from the usual input point clouds and features, this class takes some additional runtime parameters which have great influence on the performance of the alignment algorithm. The first two have the same meaning as in the alignment class :pcl:`SampleConsensusInitialAlignment <pcl::SampleConsensusInitialAlignment>`:

	Number of samples - setNumberOfSamples (): The number of point correspondences to sample between the object and the scene. At minimum, 3 points are required to calculate a pose.

	Correspondence randomness - setCorrespondenceRandomness (): Instead of matching each object FPFH descriptor to its nearest matching feature in the scene, we can choose between the N best matches at random. This increases the iterations necessary, but also makes the algorithm robust towards outlier matches.

	Polygonal similarity threshold - setSimilarityThreshold (): The alignment class uses the :pcl:`CorrespondenceRejectorPoly <pcl::registration::CorrespondenceRejectorPoly>` class for early elimination of bad poses based on pose-invariant geometric consistencies of the inter-distances between sampled points on the object and the scene. The closer this value is set to 1, the more greedy and thereby fast the algorithm becomes. However, this also increases the risk of eliminating good poses when noise is present.

	Inlier threshold - setMaxCorrespondenceDistance (): This is the Euclidean distance threshold used for determining whether a transformed object point is correctly aligned to the nearest scene point or not. In this example, we have used a heuristic value of 1.5 times the point cloud resolution.

	Inlier fraction - setInlierFraction (): In many practical scenarios, large parts of the observed object in the scene are not visible, either due to clutter, occlusions or both. In such cases, we need to allow for pose hypotheses that do not align all object points to the scene. The absolute number of correctly aligned points is determined using the inlier threshold, and if the ratio of this number to the total number of points in the object is higher than the specified inlier fraction, we accept a pose hypothesis as valid.

Finally, we are ready to execute the alignment process.

The aligned object is stored in the point cloud object_aligned. If a pose with enough inliers was found (more than 25 % of the total number of object points), the algorithm is said to converge, and we can print and visualize the results.

Compiling and running the program

Create a CMakeLists.txt file with the following content (or download it here):

After you have made the executable, you can run it like so:

$./alignment_prerejective chef.pcd rs1.pcd

After a few seconds, you will see a visualization and a terminal output similar to:

Alignment took 352ms.

 | 0.040 -0.929 -0.369 |
R = | -0.999 -0.035 -0.020 |
 | 0.006 0.369 -0.929 |

t = < -0.287, 0.045, 0.126 >

Inliers: 987/3432

The visualization window should look something like the below figures. The scene is shown with green color, and the aligned object model is shown with blue color. Note the high number of non-visible object points.

[image: _images/alignment_prerejective_1.png]
Frontal view

[image: _images/alignment_prerejective_2.png]
Side view

Benchmarking 3D

This document introduces benchmarking concepts for 3D algorithms. By
benchmarking here we refer to the possibility of testing different
computational pipelines in an easy manner. The goal is to test their
reproductibility with respect to a particular problem of general interest.

Contents

	Benchmarking 3D

	Benchmarking Object Recognition

	1. Training

	2. Keypoints

	3. Descriptors

	4. Classification

	5. Evaluation

	Object Recognition API

Benchmarking Object Recognition

For the general problem of Object Recognition (identification, categorization,
detection, etc – all fall in the same category here), we identify the
following steps:

1. Training

Users should be able to acquire training data from different inputs, including
but not limited to:

	full triangle meshes (CAD models);

	360-degree full point cloud models;

	partial point cloud views:

	in clutter;

	cleanly segmented.

2. Keypoints

Computing higher level representation from the object’s appearance (texture + depth) should be done:

	densely - at every point/vertex in the input data;

	at certain interest points (i.e., keypoints).

The detected keypoint might also contain some meta-information required by some descriptors, like scale or orientation.

3. Descriptors

A higher level representation as mentioned before will be herein represented by a feature descriptor. Feature descriptors can be:

	2D (two-dimensional) – here we refer to those descriptors estimated solely from RGB texture data;

	3D (three-dimensional) – here we refer to those descriptors estimated solely from XYZ/depth data;

	a combination of the above.

In addition, feature descriptors can be:

	local - estimated only at a set of discrete keypoints, using the information from neighboring pixels/points;

	global, or meta-local - estimated on entire objects or the entire input dataset.

4. Classification

The distribution of features should be classifiable into distinct, separable
classes. For local features, we identify two sets of techniques:

	bag of words;

	voting;

	supervised voting (regression from the description to the relative 3D location, e.g. Hough forest).

For global features, any general purpose classification technique should work (e.g., SVMs, nearest neighbors, etc).

In addition to classification, a substep of it could be considered
Registration. Here we refine the classification results using iterative
closest point techniques for example.

5. Evaluation

This pipeline should be able to evaluate the algorithm’s performance at
different tasks. Here are some requested tasks to support:

	object id and pose

	object id and segmentation

	object id and bounding box

	category and segmentation

	category and bounding box

5.1 Metrics

This pipeline should provide different metrics, since algorithms excel in
different areas. Here are some requested metrics:

	precision-recall

	time

	average rank of correct id

	area under curve of cumulative histogram of rank of correct id

Object Recognition API

Here we describe a proposed set of classes that could be easily extended and
used for the purpose of benchmarking object recognition tasks.

	Training

	Keypoints

	Descriptors

	Classification

	Evaluation

The evaluation output needs to be one of the following:

	object id

	object pose

	object category

	object bounding box

	object mask

Filter Benchmarking

This document introduces benchmarking concepts for filtering algorithms. By
benchmarking here we refer to the possibility of testing different
parameters for each filter algorithm on a specific point cloud in an easy manner. The goal is to find the best parameters of a certain filter that best describe the original point cloud without removing useful data.

Contents

	Filter Benchmarking

	Benchmarking Filter Algorithms

	1. Functionality

	2. Filter Types and Parameters

	3. Evaluation

Benchmarking Filter Algorithms

To get rid of noisy data in a scan of a 3D scene or object, many filters could be applied to obtain the cleanest representation possible of the object or scene. These filters need to be tuned according to the characteristics of the raw data. A filter evaluation class can be implemented, similar to the FeatureEvaluationFramework to find these parameters.

1. Functionality

The FilterEvaluationFramework object could be initialized by the following functions:

	setInputCloud: Load test cloud from .pcd file;

	setFilterTest: Choose the filter algorithm to be tested;

	setParameters: Specific to the Filter Algorithm;

	setThreshold: A single or a range of threshold values for the evaluation metric;

2. Filter Types and Parameters

Provide test classes for all the existing filters implemented in PCL.

	StatisticalOutlierRemoval: meanK and StddevMulThresh;

	RadiusOutlierRemoval: radiusSearch and MinNeighborsInRadius;

	VoxelGrid: LeafSize;

	etc..

Users should be able to add their custom filter implementations to the framework.

3. Evaluation

This benchmark should be able to evaluate the filter’s performance with the specified parameters. The Evaluation metrics should answer the following questions:

	Did the filter remove useful data? (new holes)

	Is the new filtered cloud a clear representation of the original? (same surface)

	Computation Time?

Fitting trimmed B-splines to unordered point clouds

This tutorial explains how to run a B-spline fitting algorithm on a
point-cloud, to obtain a smooth, parametric surface representation.
The algorithm consists of the following steps:

	Initialization of the B-spline surface by using the Principal Component Analysis (PCA). This
assumes that the point-cloud has two main orientations, i.e. that it is roughly planar.

	Refinement and fitting of the B-spline surface.

	Circular initialization of the B-spline curve. Here we assume that the point-cloud is
compact, i.e. no separated clusters.

	Fitting of the B-spline curve.

	Triangulation of the trimmed B-spline surface.

In this video, the algorithm is applied to the frontal scan of the stanford bunny (204800 points):

 The CloudViewer

The CloudViewer

The CloudViewer is a straight forward, simple point cloud visualization, meant
to get you up and viewing clouds in as little code as possible.

Note

The CloudViewer class is NOT meant to be used in multi-threaded
applications! Please check the documentation on
:pcl:`PCLVisualizer<pcl::visualization::PCLVisualizer>` or read the PCLVisualizer tutorial
for thread safe visualization.

Contents

	The CloudViewer

	Simple Cloud Visualization

	A more complete sample:

	Compiling and running the program

Simple Cloud Visualization

If you just want to visualize something in your app with a few lines of code,
use a snippet like the following one:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 #include <pcl/visualization/cloud_viewer.h>
 //...
 void
 foo ()
 {
 pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud;
 //... populate cloud
 pcl::visualization::CloudViewer viewer ("Simple Cloud Viewer");
 viewer.showCloud (cloud);
 while (!viewer.wasStopped ())
 {
 }
 }

A more complete sample:

The following shows how to run code on the visualization thread. The PCLVisualizer is
the back end of the CloudViewer, but its running in its own thread. To access it you
must use callback functions, to avoid the visualization concurrency issues. However
care must be taken to avoid race conditions in your code, as the callbacks will be
called from the visualization thread.

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

After you have made the executable, you can run it like so:

$./cloud_viewer

 Euclidean Cluster Extraction

Euclidean Cluster Extraction

In this tutorial we will learn how to extract Euclidean clusters with the
pcl::EuclideanClusterExtraction class. In order to not complicate the
tutorial, certain elements of it such as the plane segmentation algorithm,
will not be explained here. Please check the Plane model segmentation
tutorial for more information.

Contents

	Euclidean Cluster Extraction

	Theoretical Primer

	The Code

	The Explanation

	Compiling and running the program

Theoretical Primer

A clustering method needs to divide an unorganized point cloud model \(P\)
into smaller parts so that the overall processing time for \(P\) is
significantly reduced. A simple data clustering approach in an Euclidean sense
can be implemented by making use of a 3D grid subdivision of the space using
fixed width boxes, or more generally, an octree data structure. This particular
representation is very fast to build and is useful for situations where either
a volumetric representation of the occupied space is needed, or the data in
each resultant 3D box (or octree leaf) can be approximated with a different
structure. In a more general sense however, we can make use of nearest
neighbors and implement a clustering technique that is essentially similar to a
flood fill algorithm.

Let’s assume we have given a point cloud with a table and objects on top of it.
We want to find and segment the individual object point clusters lying on the
plane. Assuming that we use a Kd-tree structure for finding the nearest
neighbors, the algorithmic steps for that would be (from [RusuDissertation]):

	create a Kd-tree representation for the input point cloud dataset \(P\);

	set up an empty list of clusters \(C\), and a queue of the points that need to be checked \(Q\);

	then for every point \(\boldsymbol{p}_i \in P\), perform the following steps:

	add \(\boldsymbol{p}_i\) to the current queue \(Q\);

	for every point \(\boldsymbol{p}_i \in Q\) do:

	search for the set \(P^i_k\) of point neighbors of \(\boldsymbol{p}_i\) in a sphere with radius \(r < d_{th}\);

	for every neighbor \(\boldsymbol{p}^k_i \in P^k_i\), check if the point has already been processed, and if not add it to \(Q\);

	when the list of all points in \(Q\) has been processed, add
\(Q\) to the list of clusters \(C\), and reset \(Q\) to an
empty list

	the algorithm terminates when all points \(\boldsymbol{p}_i \in P\) have been processed and are now part of the list of point clusters \(C\)

The Code

First, download the dataset table_scene_lms400.pcd [https://raw.github.com/PointCloudLibrary/data/master/tutorials/table_scene_lms400.pcd] and save it somewhere to disk.

Then, create a file, let’s say, cluster_extraction.cpp in your favorite
editor, and place the following inside it:

The Explanation

Now, let’s break down the code piece by piece, skipping the obvious.

 // Read in the cloud data
 pcl::PCDReader reader;
 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);
 reader.read ("table_scene_lms400.pcd", *cloud);
 std::cout << "PointCloud before filtering has: " << cloud->points.size () << " data points." << std::endl;

 .
 .
 .

 while (cloud_filtered->points.size () > 0.3 * nr_points)
 {

 .
 .
 .

 // Remove the plane inliers, extract the rest
 extract.setNegative (true);
 extract.filter (*cloud_f);
cloud_filtered = cloud_f;
 }

The code above is already described in other tutorials, so you can read the
explanation there (in particular Plane model segmentation and
Extracting indices from a PointCloud).

There we are creating a KdTree object for the search method of our extraction
algorithm.

Here we are creating a vector of PointIndices, which contain the actual index information in a vector<int>. The indices of each detected
cluster are saved here - please take note of the fact that cluster_indices is a
vector containing one instance of PointIndices for each detected cluster. So
cluster_indices[0] contains all indices of the first cluster in our point cloud.

Here we are creating a EuclideanClusterExtraction object with point type
PointXYZ since our point cloud is of type PointXYZ. We are also setting the
parameters and variables for the extraction. Be careful setting the right
value for setClusterTolerance(). If you take a very small value, it can
happen that an actual object can be seen as multiple clusters. On the other
hand, if you set the value too high, it could happen, that multiple objects
are seen as one cluster. So our recommendation is to just test and try out
which value suits your dataset.

We impose that the clusters found must have at least setMinClusterSize()
points and maximum setMaxClusterSize() points.

Now we extracted the clusters out of our point cloud and saved the indices in
cluster_indices. To separate each cluster out of the vector<PointIndices>
we have to iterate through cluster_indices, create a new PointCloud for
each entry and write all points of the current cluster in the PointCloud.

Compiling and running the program

Add the following lines to your CMakeLists.txt

After you have made the executable, you can run it. Simply do:

$./cluster_extraction

You will see something similar to:

PointCloud before filtering has: 460400 data points.
PointCloud after filtering has: 41049 data points.
[SACSegmentation::initSACModel] Using a model of type: SACMODEL_PLANE
[SACSegmentation::initSAC] Using a method of type: SAC_RANSAC with a model threshold of 0.020000
[SACSegmentation::initSAC] Setting the maximum number of iterations to 100
PointCloud representing the planar component: 20522 data points.
[SACSegmentation::initSACModel] Using a model of type: SACMODEL_PLANE
[SACSegmentation::initSAC] Using a method of type: SAC_RANSAC with a model threshold of 0.020000
[SACSegmentation::initSAC] Setting the maximum number of iterations to 100
PointCloud representing the planar component: 12429 data points.
PointCloud representing the Cluster: 4883 data points.
PointCloud representing the Cluster: 1386 data points.
PointCloud representing the Cluster: 320 data points.
PointCloud representing the Cluster: 290 data points.
PointCloud representing the Cluster: 120 data points.

You can also look at your outputs cloud_cluster_0.pcd, cloud_cluster_1.pcd,
cloud_cluster_2.pcd, cloud_cluster_3.pcd and cloud_cluster_4.pcd:

$./pcl_viewer cloud_cluster_0.pcd cloud_cluster_1.pcd cloud_cluster_2.pcd cloud_cluster_3.pcd cloud_cluster_4.pcd

You are now able to see the different clusters in one viewer. You should see
something similar to this:

[image: Output Cluster Extraction]

 Point Cloud Compression

Point Cloud Compression

Point clouds consist of huge data sets describing three dimensional points associated with
additional information such as distance, color, normals, etc. Additionally, they can be created at high rate and therefore occupy a significant amount
of memory resources. Once point clouds have to be stored or transmitted over rate-limited communication channels,
methods for compressing this kind of data become highly interesting. The Point Cloud Library provides point cloud compression functionality. It allows for encoding all kinds of point clouds including “unorganized” point clouds that are characterized by
non-existing point references, varying point size, resolution, density and/or point ordering. Furthermore, the underlying octree data structure
enables to efficiently merge point cloud data from several sources.

[image: octreeCompression]

In the following, we explain how single point clouds as well
as streams of points clouds can be efficiently compressed.
In the presented example, we capture point clouds with the OpenNIGrabber to be compressed using the PCL point cloud compression techniques.

Contents

	Point Cloud Compression

	The code:

	The explanation

	Compiling and running the program

	Compression Profiles:

	Advanced parametrization:

	Command line tool for PCL point cloud stream compression

	Conclusion

The code:

First, create a file, let’s say, point_cloud_compression.cpp and place the following inside it:

The explanation

Now, let’s discuss the code in detail. Let’s start at the main() function: First we create a new SimpleOpenNIViewer instance and call its run() method.

In the run() function, we create instances of the OctreePointCloudCompression class for encoding and decoding.
They can take compression profiles as an arguments for configuring the compression algorithm. The provided compression profiles predefine
common parameter sets for point clouds captured by openNI devices. In this example, we use the MED_RES_ONLINE_COMPRESSION_WITH_COLOR profile which
applies a coordinate encoding precision of 5 cubic millimeter and enables color component encoding. It is further optimized for fast online compression.
A full list of compression profiles including their configuration can be found in the file
“/io/include/pcl/compression/compression_profiles.h”.
A full parametrization of the compression algorithm is also possible in the OctreePointCloudCompression constructor using the MANUAL_CONFIGURATION profile.
For further details on advanced parametrization, please have a look at section “Advanced Parametrization”.

The following code instantiates a new grabber for an OpenNI device and starts the interface callback loop.

In the callback function executed by the OpenNIGrabber capture loop, we first compress the captured point cloud into a stringstream buffer. That follows a
decompression step, which decodes the compressed binary data into a new point cloud object. The decoded point cloud is then sent to the point cloud viewer.

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

After you have made the executable, you can run it. Simply do:

$./point_cloud_compression

You will see something similar to:

[OpenNIGrabber] Number devices connected: 1
[OpenNIGrabber] 1. device on bus 002:17 is a Xbox NUI Camera (2ae) from Microsoft (45e) with serial id 'B00364707960044B'
[OpenNIGrabber] device_id is not set or has unknown format: ! Using first device.
[OpenNIGrabber] Opened 'Xbox NUI Camera' on bus 2:17 with serial number 'B00364707960044B'
streams alive: image, depth_image
*** POINTCLOUD ENCODING ***
Frame ID: 1
Encoding Frame: Intra frame
Number of encoded points: 192721
XYZ compression percentage: 3.91049%
XYZ bytes per point: 0.469259 bytes
Color compression percentage: 15.4717%
Color bytes per point: 0.618869 bytes
Size of uncompressed point cloud: 3011.27 kBytes
Size of compressed point cloud: 204 kBytes
Total bytes per point: 1.08813 bytes
Total compression percentage: 6.8008%
Compression ratio: 14.7042

*** POINTCLOUD ENCODING ***
Frame ID: 2
Encoding Frame: Prediction frame
Number of encoded points: 192721
XYZ compression percentage: 3.8132%
XYZ bytes per point: 0.457584 bytes
Color compression percentage: 15.5448%
Color bytes per point: 0.62179 bytes
Size of uncompressed point cloud: 3011.27 kBytes
Size of compressed point cloud: 203 kBytes
Total bytes per point: 1.07937 bytes
Total compression percentage: 6.74609%
Compression ratio: 14.8234

*** POINTCLOUD ENCODING ***
Frame ID: 3
Encoding Frame: Prediction frame
Number of encoded points: 192721
XYZ compression percentage: 3.79962%
XYZ bytes per point: 0.455954 bytes
Color compression percentage: 15.2121%
Color bytes per point: 0.608486 bytes
Size of uncompressed point cloud: 3011.27 kBytes
Size of compressed point cloud: 200 kBytes
Total bytes per point: 1.06444 bytes
Total compression percentage: 6.65275%
Compression ratio: 15.0314

...

Compression Profiles:

Compression profiles define parameter sets for the PCL point cloud encoder. They are optimized for compression of
common point clouds retrieved from the OpenNI grabber.
Please note, that the decoder does not need to be parametrized as it detects and adopts the configuration used during encoding.
The following compression profiles are available:

	LOW_RES_ONLINE_COMPRESSION_WITHOUT_COLOR 1 cubic centimeter resolution, no color, fast online encoding

	LOW_RES_ONLINE_COMPRESSION_WITH_COLOR 1 cubic centimeter resolution, color, fast online encoding

	MED_RES_ONLINE_COMPRESSION_WITHOUT_COLOR 5 cubic millimeter resolution, no color, fast online encoding

	MED_RES_ONLINE_COMPRESSION_WITH_COLOR 5 cubic millimeter resolution, color, fast online encoding

	HIGH_RES_ONLINE_COMPRESSION_WITHOUT_COLOR 1 cubic millimeter resolution, no color, fast online encoding

	HIGH_RES_ONLINE_COMPRESSION_WITH_COLOR 1 cubic millimeter resolution, color, fast online encoding

	LOW_RES_OFFLINE_COMPRESSION_WITHOUT_COLOR 1 cubic centimeter resolution, no color, efficient offline encoding

	LOW_RES_OFFLINE_COMPRESSION_WITH_COLOR 1 cubic centimeter resolution, color, efficient offline encoding

	MED_RES_OFFLINE_COMPRESSION_WITHOUT_COLOR 5 cubic millimeter resolution, no color, efficient offline encoding

	MED_RES_OFFLINE_COMPRESSION_WITH_COLOR 5 cubic millimeter resolution, color, efficient offline encoding

	HIGH_RES_OFFLINE_COMPRESSION_WITHOUT_COLOR 1 cubic millimeter resolution, no color, efficient offline encoding

	HIGH_RES_OFFLINE_COMPRESSION_WITH_COLOR 1 cubic millimeter resolution, color, efficient offline encoding

	MANUAL_CONFIGURATION enables manual configuration for advanced parametrization

Advanced parametrization:

In order to have full access to all compression related parameters, the constructor of the OctreePointCloudCompression class can initialized with additional
compression parameters. Please note, that for enabling advanced parametrization, the compressionProfile_arg argument needs to be set to MANUAL_CONFIGURATION.

OctreePointCloudCompression (compression_Profiles_e compressionProfile_arg,
 bool showStatistics_arg,
 const double pointResolution_arg,
 const double octreeResolution_arg,
 bool doVoxelGridDownDownSampling_arg,
 const unsigned int iFrameRate_arg,
 bool doColorEncoding_arg,
 const unsigned char colorBitResolution_arg
)

The advanced parametrization is explained in the following:

	compressionProfile_arg: This parameter should be set to MANUAL_CONFIGURATION for enabling advanced parametrization.

	showStatistics_arg: Print compression related statistics to stdout.

	pointResolution_arg: Define coding precision for point coordinates. This parameter should be set to a value below the sensor noise.

	octreeResolution_arg: This parameter defines the voxel size of the deployed octree. A lower voxel resolution enables faster compression at, however,
decreased compression performance. This enables a trade-off between high frame/update rates and compression efficiency.

	doVoxelGridDownDownSampling_arg: If activated, only the hierarchical octree data structure is encoded. The decoder generated points at the voxel centers. In this
way, the point cloud becomes downsampled during compression while achieving high compression performance.

	iFrameRate_arg: The point cloud compression scheme differentially encodes point clouds. In this way, differences between the incoming point cloud and the previously encoded pointcloud is encoded in order to achieve maximum compression performance. The iFrameRate_arg allows to specify the rate of frames in the stream at which incoming point clouds are not differentially encoded (similar to I/P-frames in video coding).

	doColorEncoding_arg: This option enables color component encoding.

	colorBitResolution_arg: This parameter defines the amount of bits per color component to be encoded.

Command line tool for PCL point cloud stream compression

The pcl apps component contains a command line tool for point cloud compression
and streaming: Simply execute “./pcl_openni_octree_compression -?” to see a full
list of options (note: the output on screen may differ):

PCL point cloud stream compression

usage: ./pcl_openni_octree_compression [mode] [profile] [parameters]

I/O:
 -f file : file name

file compression mode:
 -x: encode point cloud stream to file
 -d: decode from file and display point cloud stream

network streaming mode:
 -s : start server on localhost
 -c host : connect to server and display decoded cloud stream

optional compression profile:
 -p profile : select compression profile:
 -"lowC" Low resolution with color
 -"lowNC" Low resolution without color
 -"medC" Medium resolution with color
 -"medNC" Medium resolution without color
 -"highC" High resolution with color
 -"highNC" High resolution without color

optional compression parameters:
 -r prec : point precision
 -o prec : octree voxel size
 -v : enable voxel-grid downsampling
 -a : enable color coding
 -i rate : i-frame rate
 -b bits : bits/color component
 -t : output statistics
 -e : show input cloud during encoding

example:
 ./pcl_openni_octree_compression -x -p highC -t -f pc_compressed.pcc

In order to stream compressed point cloud via TCP/IP, you can start the server with:

$./pcl_openni_octree_compression -s

It will listen on port 6666 for incoming connections. Now start the client with:

$./pcl_openni_octree_compression -c SERVER_NAME

and remotely captured point clouds will be locally shown in the point cloud viewer.

Conclusion

This PCL point cloud compression enables to efficiently compress point clouds of any type and point cloud streams.

 Concatenate the points of two Point Clouds

Concatenate the points of two Point Clouds

In this tutorial we will learn how to concatenate the points of two different
point clouds. The constraint imposed here is that the type and number of fields
in the two datasets have to be equal. We will also learn how to concatenate the fields (e.g.,
dimensions) of two different point clouds. The constraint imposed here is that
the number of points in the two datasets has to be equal.

The code

First, create a file, let’s say, concatenate_clouds.cpp in your favorite
editor, and place the following code inside it:

The explanation

Now, let’s break down the code piece by piece.

In lines:

we define the five Point Clouds for use in concatenating clouds: three inputs (cloud_a, cloud_b and n_cloud_b), two outputs (cloud_c and p_n_cloud_c). Then we fill in the data for the two input point clouds we are using (for points cloud_a and cloud_b, for fields cloud_a and n_cloud_b).

Then, lines:

display the content of cloud_a and either cloud_b or n_cloud_b (depending on the command line argument) to screen.

If we are trying to concatenate points then the code below:

creates cloud_c by concatenating the points of cloud_a and cloud_b together.

Otherwise if we are attempting to concatenate fields then the code below:

creates p_n_cloud_c by concatenating the fields of cloud_a and cloud_b together.

Finally either:

or

is used to show the content of cloud_c or p_n_cloud_c to the screen depending on if we concatenated the points or fields of the PointClouds.

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

After you have made the executable, you can run it. Simply do:

$./concatenate_clouds -p

to concatenate points or do:

$./concatenate_clouds -f

to concatenate fields.

You will see something similar to if concatenating points:

Cloud A:
 0.352222 -0.151883 -0.106395
 -0.397406 -0.473106 0.292602
 -0.731898 0.667105 0.441304
 -0.734766 0.854581 -0.0361733
 -0.4607 -0.277468 -0.916762
Cloud B:
 0.183749 0.968809 0.512055
 -0.998983 -0.463871 0.691785
 0.716053 0.525135 -0.523004
Cloud C:
 0.352222 -0.151883 -0.106395
 -0.397406 -0.473106 0.292602
 -0.731898 0.667105 0.441304
 -0.734766 0.854581 -0.0361733
 -0.4607 -0.277468 -0.916762
 0.183749 0.968809 0.512055
 -0.998983 -0.463871 0.691785
 0.716053 0.525135 -0.523004

and similar to this if concatenating fields:

Cloud A:
 0.352222 -0.151883 -0.106395
 -0.397406 -0.473106 0.292602
 -0.731898 0.667105 0.441304
 -0.734766 0.854581 -0.0361733
 -0.4607 -0.277468 -0.916762
Cloud B:
 0.183749 0.968809 0.512055
 -0.998983 -0.463871 0.691785
 0.716053 0.525135 -0.523004
 0.439387 0.56706 0.905417
 -0.579787 0.898706 -0.504929
Cloud C:
 0.352222 -0.151883 -0.106395 0.183749 0.968809 0.512055
 -0.397406 -0.473106 0.292602 -0.998983 -0.463871 0.691785
 -0.731898 0.667105 0.441304 0.716053 0.525135 -0.523004
 -0.734766 0.854581 -0.0361733 0.439387 0.56706 0.905417
 -0.4607 -0.277468 -0.916762 -0.579787 0.898706 -0.504929

 Concatenate the fields of two Point Clouds

Concatenate the fields of two Point Clouds

In this tutorial we will learn how to concatenating the fields (e.g.,
dimensions) of two different point clouds. The constraint imposed here is that
the number of points in the two datasets has to be equal.

The code

First, create a file, let’s say, concatenate_fields.cpp in your favorite
editor, and place the following code inside it:

The explanation

Now, let’s break down the code piece by piece.

define the three Point Clouds: two inputs (cloud_a and cloud_b), one output
(cloud_c).

The lines:

fill in the data for the two input point clouds.

Then, lines:

display the content of cloud_a and cloud_b to screen.

In line:

we create cloud_c by concatenating the fields of cloud_a and cloud_b together.

Finally:

is used to show the content of cloud_c.

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

After you have made the executable, you can run it. Simply do:

$./concatenate_fields

You will see something similar to:

Cloud A:
 0.352222 -0.151883 -0.106395
 -0.397406 -0.473106 0.292602
 -0.731898 0.667105 0.441304
 -0.734766 0.854581 -0.0361733
 -0.4607 -0.277468 -0.916762
Cloud B:
 0.183749 0.968809 0.512055
 -0.998983 -0.463871 0.691785
 0.716053 0.525135 -0.523004
 0.439387 0.56706 0.905417
 -0.579787 0.898706 -0.504929
Cloud C:
 0.352222 -0.151883 -0.106395 0.183749 0.968809 0.512055
 -0.397406 -0.473106 0.292602 -0.998983 -0.463871 0.691785
 -0.731898 0.667105 0.441304 0.716053 0.525135 -0.523004
 -0.734766 0.854581 -0.0361733 0.439387 0.56706 0.905417
 -0.4607 -0.277468 -0.916762 -0.579787 0.898706 -0.504929

 Concatenate the points or the fields of two Point Clouds

Concatenate the points or the fields of two Point Clouds

In this tutorial we will learn how to concatenating the points of two different
point clouds. The constraint imposed here is that the type and number of fields
in the two datasets have to be equal.

The code

First, create a file, let’s say, concatenate_points.cpp in your favorite
editor, and place the following code inside it:

The explanation

Now, let’s break down the code piece by piece.

In lines:

we define the three Point Clouds: two inputs (cloud_a and cloud_b), one output
(cloud_c), and fill in the data for the two input point clouds.

Then, lines:

display the content of cloud_a and cloud_b to screen.

In line:

we create cloud_c by concatenating the points of cloud_a and cloud_b together.

Finally:

is used to show the content of cloud_c.

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

After you have made the executable, you can run it. Simply do:

$./concatenate_points

You will see something similar to:

Cloud A:
 0.352222 -0.151883 -0.106395
 -0.397406 -0.473106 0.292602
 -0.731898 0.667105 0.441304
 -0.734766 0.854581 -0.0361733
 -0.4607 -0.277468 -0.916762
Cloud B:
 0.183749 0.968809 0.512055
 -0.998983 -0.463871 0.691785
 0.716053 0.525135 -0.523004
Cloud C:
 0.352222 -0.151883 -0.106395
 -0.397406 -0.473106 0.292602
 -0.731898 0.667105 0.441304
 -0.734766 0.854581 -0.0361733
 -0.4607 -0.277468 -0.916762
 0.183749 0.968809 0.512055
 -0.998983 -0.463871 0.691785
 0.716053 0.525135 -0.523004

 Conditional Euclidean Clustering

Conditional Euclidean Clustering

This tutorial describes how to use the pcl::ConditionalEuclideanClustering class:
A segmentation algorithm that clusters points based on Euclidean distance and a user-customizable condition that needs to hold.

This class uses the same greedy-like / region-growing / flood-filling approach that is used in Euclidean Cluster Extraction, Region growing segmentation and Color-based region growing segmentation.
The advantage of using this class over the other classes is that the constraints for clustering (pure Euclidean, smoothness, RGB) are now customizable by the user.
Some disadvantages include: no initial seeding system, no over- and under-segmentation control, and the fact that calling a conditional function from inside the main computational loop is less time efficient.

Theoretical Primer

The Euclidean Cluster Extraction and Region growing segmentation tutorials already explain the region growing algorithm very accurately.
The only addition to those explanations is that the condition that needs to hold for a neighbor to be merged into the current cluster, can now be fully customized.

As a cluster grows, it will evaluate the user-defined condition between points already inside the cluster and nearby candidate points.
The candidate points (nearest neighbor points) are found using a Euclidean radius search around each point in the cluster.
For each point within a resulting cluster, the condition needed to hold with at least one of its neighbors and NOT with all of its neighbors.

The Conditional Euclidean Clustering class can also automatically filter clusters based on a size constraint.
The clusters classified as too small or too large can still be retrieved afterwards.

The Code

First, download the dataset Statues_4.pcd [https://sourceforge.net/projects/pointclouds/files/PCDdatasets/Trimble/Outdoor1/Statues_4.pcd.zip] and extract the PCD file from the archive.
This is a very large data set of an outdoor environment where we aim to cluster the separate objects and also want to separate the building from the ground plane even though it is attached in a Euclidean sense.

Now create a file, let’s say, conditional_euclidean_clustering.cpp in your favorite editor, and place the following inside it:

The Explanation

Since the Conditional Euclidean Clustering class is for more advanced users, I will skip explanation of the more obvious parts of the code:

	pcl::io::loadPCDFile and pcl::io::savePCDFile are used for loading and saving the point cloud data.

	pcl::console::TicToc is used for easy output of timing results.

	Downsampling a PointCloud using a VoxelGrid filter is being used (lines 66-73) to downsample the cloud and give a more equalized point density.

	Estimating Surface Normals in a PointCloud is being used (lines 75-83) to estimate normals which will be appended to the point information;
The Conditional Euclidean Clustering class will be templated with pcl::PoitnXYZINormal, containing x, y, z, intensity, normal and curvature information to use in the condition function.

Lines 85-95 set up the Conditional Euclidean Clustering class for use:

A more elaborate description of the different lines of code:

	The class is initialized with TRUE.
This will allow extraction of clusters that are too small or too large.
It saves some computation time and memory if the class is initialized without this.

	The input data for the class can be specified using methods derived from the PCLBase class, i.e.: setInputCloud and setIndices.

	As a cluster grows, it will evaluate a user-defined condition between points already inside the cluster and nearby candidate points.
More on the condition function can be read further below.

	The cluster tolerance is the radius for the k-NN searching, used to find the candidate points.

	Clusters that make up less than 0.1% of the cloud’s total points are considered too small.

	Clusters that make up more than 20% of the cloud’s total points are considered too large.

	The resulting clusters are stored in the pcl::IndicesClusters format, which is an array of indices-arrays, indexing points of the input point cloud.

	Too small clusters or too large clusters are not passed to the main output but can instead be retrieved in separate pcl::IndicesClusters data containers, but only is the class was initialized with TRUE.

Lines 12-49 show some examples of condition functions:

The format of the condition function is fixed:

	The first two input arguments need to be of the same type as the templated type used in the Conditional Euclidean Clustering class.
These arguments will pass the point information for the current seed point (first argument) and the current candidate point (second argument).

	The third input argument needs to be a float.
This argument will pass the squared distance between the seed and candidate point.
Although this information is also computable using the first two arguments, it is already provided by the underlying nearest neighbor search and can be used to easily make a distance dependent condition function.

	The output argument needs to be a boolean.
Returning TRUE will merge the candidate point into the cluster of the seed point.
Returning FALSE will not merge the candidate point through this particular point-pair, however, it is still possible that the two points will end up in the same cluster through a different point-pair relationship.

These example condition functions are just to give an indication of how to use them.
For instance, the second condition function will grow clusters as long as they are similar in surface normal direction OR similar in intensity value.
This should hopefully cluster buildings of similar texture as one cluster, but not merge them into the same cluster as adjacent objects.
This is going to work out if the intensity is different enough from nearby objects AND the nearby objects are not sharing a nearby surface with the same normal.
The third condition function is similar to the second but has different constraints depending on the distance between the points.

Lines 97-109 contain a piece of code that is a quick and dirty fix to visualize the result:

When the output point cloud is opened with PCL’s standard PCD viewer, pressing ‘5’ will switch to the intensity channel visualization.
The too-small clusters will be colored red, the too-large clusters will be colored blue, and the actual clusters/objects of interest will be colored randomly in between yellow and cyan hues.

Compiling and running the program

Add the following lines to your CMakeLists.txt

After you have made the executable, you can run it. Simply do:

$./conditional_euclidean_clustering

The resulting output point cloud can be opened like so:

$./pcl_viewer output.pcd

You should see something similar to this:

[image: Output Cluster Extraction]
This result is sub-optimal but it gives an idea of what can be achieved with this class.
The mathematics and heuristics behind the customizable condition are now the responsibility of the user.

 Removing outliers using a ConditionalRemoval filter

Removing outliers using a ConditionalRemoval filter

This document demonstrates how to use the ConditionalRemoval filter to remove points from a PointCloud that do not satisfy a specific or multiple conditions.

The code

First, create a file, let’s say, conditional_removal.cpp in you favorite editor, and place the following inside it:

The explanation

Now, let’s break down the code piece by piece.

In the following Lines, we define the PointCloud structures, fill in the input cloud, and display it’s content to screen.

Then, we create the condition which a given point must satisfy so that it remains in our PointCloud. To do this we must add two comparisons to the condition, greater than 0.0, and less than 0.8. This condition is then used to build the filter.

This last bit of code just applies the filter to our original PointCloud, and removes all of the points that do not satisfy the conditions we specified. Then it outputs all of the points remaining in the PointCloud.

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

After you have made the executable, you can run it. Simply do:

$./conditioinal_removal

You will see something similar to:

Cloud before filtering:
 0.352222 -0.151883 -0.106395
 -0.397406 -0.473106 0.292602
 -0.731898 0.667105 0.441304
 -0.734766 0.854581 -0.0361733
 -0.4607 -0.277468 -0.916762
Cloud after filtering:
 -0.397406 -0.473106 0.292602
 -0.731898 0.667105 0.441304

 Construct a convex hull polygon for a plane model

Construct a convex hull polygon for a plane model

In this tutorial we will learn how to calculate a simple 2D convex hull polygon
for a set of points supported by a plane.

The following video shows a demonstration of the code given below on the test
dataset table_scene_mug_stereo_textured.pcd [https://raw.github.com/PointCloudLibrary/data/master/tutorials/table_scene_mug_stereo_textured.pcd].

 3D Object Recognition based on Correspondence Grouping

3D Object Recognition based on Correspondence Grouping

This tutorial aims at explaining how to perform 3D Object Recognition based on the pcl_recognition module.
Specifically, it explains how to use Correspondence Grouping algorithms in order to cluster the set of point-to-point correspondences obtained after the 3D descriptor matching stage into model instances that are present in the current scene.
For each cluster, representing a possible model instance in the scene, the Correspondence Grouping algorithms also output the transformation matrix identifying the 6DOF pose estimation of that model in the current scene.

The code

Before you begin, you should download the PCD dataset used in this tutorial from GitHub (milk.pcd [https://github.com/PointCloudLibrary/pcl/blob/master/test/milk.pcd?raw=true] and
milk_cartoon_all_small_clorox.pcd [https://github.com/PointCloudLibrary/pcl/blob/master/test/milk_cartoon_all_small_clorox.pcd?raw=true]) and put the files in a folder of your convenience.

Also, copy and paste the following code into your editor and save it as correspondence_grouping.cpp (or download the source file here).

Walkthrough

Now let’s take a look at the various parts of the code to see how it works.

Helper Functions

Let’s start with a couple of useful functions: the first one prints
on the console a short explanation of the several command line switches
that the program can accept.

The second function does the actual parsing of the command line
arguments in order to set the correct parameters for the execution.

It’s important to say that the only command line parameters required when executing this tutorial are the filenames of the
model and the scene, in this exact order. All other parameters are set
to a default value that will make the tutorial work correctly
with the supplied dataset, although with different models and scene some parameter values might need to be adjusted. You can play around with them to see how they influence the final result.

You can choose between two correspondence clustering algorithms with the command line switch --algorithm (Hough|GC)

	
	Hough (default)

	This is a clustering algorithm based on a 3D Hough voting scheme described in:

F. Tombari and L. Di Stefano: “Object recognition in 3D scenes with occlusions and clutter by Hough voting”, 4th Pacific-Rim Symposium on Image and Video Technology, 2010.

	
	GC

	This is a geometric consistency clustering algorithm enforcing simple geometric constraints between pairs of correspondences. It builds on the proposal presented in:

H. Chen and B. Bhanu: “3D free-form object recognition in range images using local surface patches”, Pattern Recognition Letters, vol. 28, no. 10, pp. 1252-1262, 2007.

Some other interesting switches are -k, -c and -r:

	-k shows the keypoints used to compute the correspondences as a blue overlay into the PCL visualizer.

	-c draws a line connecting each pair of model-scene correspondences that survived the clustering process.

	-r estimates the spatial resolution for the model point cloud and afterwards considers the radii used as parameters as if they were given in units of cloud resolution; thus achieving some sort of resolution invariance that might be useful when using this tutorial with the same command line and different point clouds.

The next function performs the spatial resolution computation for a given point cloud averaging the distance between each cloud point and its nearest neighbor.

Clustering Pipeline

The main function, which performs the actual clustering, is quite straightforward. We will take a look at each part of code as they appear in the proposed example.

First, the program parses the command line arguments and
loads the model and scene clouds from disk (using the filenames
supplied by the user).

As a second step, only if resolution invariance flag has been enabled in the command line, the program adjusts the radii that will be used in the next sections by multiplying them for the estimated model cloud resolution.

Next, it computes the normals for each point of both the model and the scene cloud with the :pcl:`NormalEstimationOMP <pcl::NormalEstimationOMP>` estimator, using the 10 nearest neighbors of each point (this parameter seems to be fairly ok for many datasets, not just for the one provided).

Then it downsamples each cloud in order to find a small number
of keypoints, which will then be associated to a 3D descriptor in order to perform keypoint matching and determine point-to-point correspondences. The radii used for the
:pcl:`UniformSampling <pcl::UniformSampling>` are either the ones set with the command line switches or the defaults.

The next stage consists in associating a 3D descriptor to each model and scene keypoint. In our tutorial, we compute SHOT descriptors using :pcl:`SHOTEstimationOMP <pcl::SHOTEstimationOMP>`.

Now we need to determine point-to-point correspondences between
model descriptors and scene descriptors. To do this, the program uses a :pcl:`KdTreeFLANN <pcl::KdTreeFLANN>` whose input cloud has been set to the cloud containing the model descriptors.
For each descriptor associated to a scene keypoint, it efficiently finds the most
similar model descriptor based on the Euclidean distance, and it adds this pair to a :pcl:`Correspondences <pcl::Correspondences>` vector (only if the two descriptors are similar enough, i.e. their squared distance is less than a threshold, set to 0.25).

The last stage of the pipeline is the actual clustering of the
previously found correspondences.

The default algorithm is :pcl:`Hough3DGrouping <pcl::Hough3DGrouping>`, that is based on an Hough Voting process.
Please note that this algorithm needs to associate a Local Reference Frame (LRF) for each keypoint belonging to the clouds which are passed as arguments!
In this example, we explicitly compute the set of LRFs using the :pcl:`BOARDLocalReferenceFrameEstimation <pcl::BOARDLocalReferenceFrameEstimation>` estimator before calling the clustering algorithm.

Note

It’s not necessary to explicitly compute the LRFs before calling the clustering algorithm. If the clouds which are fetched to the clustering algorithm do not have a set of LRFs associated, Hough3DGrouping automatically computes them before performing clustering. In particular, this happens when calling the recognize (or cluster) method without setting the LRFs: in this case you need to specify the radius of the LRF as an additional parameter for the clustering algorithm (with the setLocalRfSearchRadius method).

Alternatively to Hough3DGrouping, and by means of the appropriate command line switch described before, you might choose to employ the :pcl:`GeometricConsistencyGrouping <pcl::GeometricConsistencyGrouping>` algorithm. In this case the LRF computation is not needed so we are simply creating an instance of the algorithm class, passing the right parameters and invoking the recognize method.

Note

The recognize method returns a vector of Eigen::Matrix4f representing a transformation (rotation + translation) for each instance of the model found in the scene (obtained via Absolute Orientation) and a vector of :pcl:`Correspondences <pcl::Correspondences>` (a vector of vectors of :pcl:`Correspondence <pcl::Correspondences>`) representing the output of the clustering i.e. each element of this vector is in turn a set of correspondences, representing the correspondences associated to a specific model instance in the scene.

If you only need the clustered correspondences because you are planning to use them in a different way, you can use the cluster method.

Output and Visualization

We are almost at the end of this tutorial. The last few words are related to the part of the program that displays the results on the console and over a PCL Visualizer window.

As a first thing we are showing, for each instance of the model found into the scene, the transformation matrix and the number of correspondences extracted by the clustering method.

The program then shows in a :pcl:`PCLVisualizer <pcl::visualization::PCLVisualizer>` window the scene cloud with a red overlay where an instance of the model has been found.
If the command line switches -k and -c have been used, the program also shows a “stand-alone” rendering of the model cloud. If keypoint visualization is enabled, keypoints are displayed as blue dots and if correspondence visualization has been enabled they are shown as a green line for each correspondence which survived the clustering process.

Compiling and running the program

Create a CMakeLists.txt file and add the following lines into it:

After you have created the executable, you can then launch it following this example:

$./correspondence_grouping milk.pcd milk_cartoon_all_small_clorox.pcd

Or, alternatively, if you prefer specifying the radii in units of cloud resolution:

$./correspondence_grouping milk.pcd milk_cartoon_all_small_clorox.pcd milk.pcd milk_cartoon_all_small_clorox.pcd -r --model_ss 7.5 --scene_ss 20 --rf_rad 10 --descr_rad 15 --cg_size 10

Remember to replace milk.pcd and milk_cartoon_all_small_clorox.pcd with model and scene filenames, in this exact order. If you want you can add other command line options as described at the beginning of this tutorial.

Note

If you are using different point clouds and you don’t know how to set the various parameters for this tutorial you can use the -r flag and try setting the LRF and descriptor radii to 5, 10, 15 or 20 times the actual cloud resolution. After that you probably will have to tweak the values by hand to achieve the best results.

After a few seconds, you will see an output similar to:

Model total points: 13704; Selected Keypoints: 732
Scene total points: 307200; Selected Keypoints: 3747

Correspondences found: 1768
Model instances found: 1

 Instance 1:
 Correspondences belonging to this instance: 24

 | 0.969 -0.120 0.217 |
 R = | 0.117 0.993 0.026 |
 | -0.218 -0.000 0.976 |

 t = < -0.159, 0.212, -0.042 >

The output window should look like this (depending on the command line options used):

[image: _images/correspondence_grouping.jpg]
[image: _images/correspondence_grouping_k.jpg]
[image: _images/correspondence_grouping_c.jpg]
[image: _images/correspondence_grouping_k_c.jpg]

 Cylinder model segmentation

Cylinder model segmentation

This tutorial exemplifies how to run a Sample Consensus segmentation for
cylindrical models. To make the example a bit more practical, the following
operations are applied to the input dataset (in order):

	data points further away than 1.5 meters are filtered

	surface normals at each point are estimated

	a plane model (describing the table in our demo dataset) is segmented and saved to disk

	a cylindrical model (describing the mug in our demo dataset) is segmented and saved to disk

 Grabbing point clouds / meshes from davidSDK scanners

Grabbing point clouds / meshes from davidSDK scanners

In this tutorial we will learn how to use the davidSDK [http://www.david-3d.com/en/products/david-sdk] through PCL. This tutorial will show you how to configure PCL and how to use the examples to fetch point clouds/meshes/images from a davidSDK compliant device (such as the SLS-2 [http://www.david-3d.com/en/products/sls-2]).

Contents

	Grabbing point clouds / meshes from davidSDK scanners

	Install davidSDK

	Configuring PCL

	Platform specific directives

	File formats

	Calibration

	Using the example

Install davidSDK

You need a davidSDK to run the SDK on the server side, the official davidSDK does not come with a Makefile or a CMake project. An un-official fork provides a CMake project that enables to easily use the SDK under Linux (with minor tweaks)

	Official davidSDK download page [http://www.david-3d.com/en/support/downloads]

	Victor Lamoine davidSDK fork [https://gitlab.com/InstitutMaupertuis/davidSDK]

Please test the example project [https://gitlab.com/InstitutMaupertuis/davidSDK/blob/master/README.md#example-project-using-the-davidsdk] before going further.

Note

If you use the trial version of the server, the only format available is OBJ (used by default)

Configuring PCL

You need at least PCL 1.8.0 to be able to use the davidSDK. You need to make sure WITH_DAVIDSDK is set to true in the CMake configuration (it should be set to true by default if you have used the un-official davidSDK fork).

The default following values can be tweaked into CMake if you don’t have a standard installation, for example:

DAVIDSDK_ABI_DIR /opt/davidsdk

You can deactivate building the davidSDK support by setting BUILD_DAVIDSDK to false. Compile and install PCL.

Platform specific directives

It should be easy to use the davidSDK PCL support if you are using PCL on the davidSDK server; the meshes are locally exported on the storage drive and then loaded into PCL as point clouds/meshes. If you are using a Linux distribution you will need to configure more things for the davidSDK PCL implementation to work, create a temporary directory for the davidSDK meshes storage:

mkdir -p /var/tmp/davidsdk
sudo chmod 755 /var/tmp/davidsdk

Edit samba configuration (samba must be installed first):

echo -e "[davidsdk]\n\
 path = /var/tmp/davidsdk\n\
 public = yes\n\
 writeable = yes\n\
 browseable = yes\n\
 guest ok = yes\n\
 create mask = 0775" |\
sudo tee -a /etc/samba/smb.conf

Restard samba server:

sudo service smbd restart

Use the :pcl:`setLocalAndRemotePaths <pcl::DavidSDKGrabber::setLocalAndRemotePaths>` function to set the local and remote paths, if you use the same path as above; this doesn’t have to be called if the server is running of the same machine as the client.

davidsdk_ptr->setLocalAndRemotePaths ("/var/tmp/davidsdk/", "\\\\name_of_machine\\davidsdk\\");

Note

If you get a Error_Fail = -107 error, it is most probably a write access missing in the temporary directory.

File formats

Three file formats are available to export the meshes / clouds.

	STL: No texture support, binary format

	OBJ: Texture support, no binary format available

	PLY: Texture support, binary format is available but davidSDK uses ASCII format

Use the :pcl:`setFileFormatToOBJ <pcl::DavidSDKGrabber::setFileFormatToOBJ>`,
:pcl:`setFileFormatToPLY <pcl::DavidSDKGrabber::setFileFormatToPLY>`,
:pcl:`setFileFormatToSTL <pcl::DavidSDKGrabber::setFileFormatToSTL>` to choose between the different formats.

The default format used is OBJ. (it is compatible with davidSDK server trial version)

Calibration

In order to use the davidSDK scanner the camera and the projector must be calibrated. This can be done by calling the :pcl:`calibrate <pcl::DavidSDKGrabber::calibrate>` function of the DavidSDKGrabber object, if the calibration fails, please check the wiki [http://wiki.david-3d.com/david-wiki].

The davidSDK will only allow you to scan if the scanner is calibrated, the davidSDK provides functions to load and save configuration files for the calibration. Also note that the davidSDK server will automatically reload the last calibration data when restarted.

Using the example

The pcl_davidsdk_viewer [https://github.com/PointCloudLibrary/pcl/blob/master/visualization/tools/davidsdk_viewer.cpp] example shows how to display a point cloud grabbed from a davidSDK device using the :pcl:`DavidSDKGrabber <pcl::DavidSDKGrabber>` class.

When using the DavidSDKGrabber you must connect to the server first; if the server is running locally you don’t need to specify an IP address. If you are using davidSDK over a network just call :pcl:`connect <pcl::DavidSDKGrabber::connect>` with the address IP as a string, please also check that the connection didn’t failed:

davidsdk_ptr->connect ("192.168.1.50");
if (!davidsdk_ptr->isConnected ())
{
 PCL_ERROR ("Cannot connect to davidSDK server.\n");
 return (-1);
}

[image: _images/davidsdk_viewer.jpg]

Warning

Fetching clouds/meshes from the davidSDK is very slow because the point clouds/meshes are sent through the JSON interface.
Do not expect better performance than 0.07 FPS (using STL format gives best performance).

Another example is available in PCL sources [https://github.com/PointCloudLibrary/pcl/blob/master/doc/tutorials/content/sources/davidsdk/], it uses OpenCV to display davidSDK images and the PCLVisualizer to display the point cloud at the same time.

 Grabbing point clouds from DepthSense cameras

Grabbing point clouds from DepthSense cameras

In PCL 1.8.0 a new grabber for DepthSense [http://www.softkinetic.com/Products/DepthSenseCameras]
cameras was added. It is based on DepthSense SDK and, as such, should work with
any camera supported by the SDK (e.g. Creative Senz3D [http://us.creative.com/p/web-cameras/creative-senz3d],
DepthSense DS325 [http://www.softkinetic.com/Store/ProductID/6]).

Note

This grabber obsoletes PXCGrabber, which was a Windows-only solution
based on discontinued Intel Perceptual Computing SDK [https://web.archive.org/web/20141228120859/https://software.intel.com/en-us/perceptual-computing-sdk].

In this tutorial we will learn how to setup and use DepthSense cameras within
PCL on both Linux and Windows platforms.

[image: _images/creative_camera.jpg]

Contents

	Grabbing point clouds from DepthSense cameras

	DepthSense SDK installation

	Linux

	Windows

	PCL configuration

	DepthSense Viewer

DepthSense SDK installation

Download and install the SDK from SoftKinetic website [http://www.softkinetic.com/support/download.aspx].
Note that to obtain Linux drivers you need to register (free of charge).

Linux

The Linux version of camera driver was built against an outdated version of
libudev, so it will not work unless you have version 0.13 of this library
installed (for example Ubuntu 14.04 comes with a newer version). There are
several easy ways to solve this problem, see this [https://web.archive.org/web/20150326145256/http://choorucode.com/2014/05/06/depthsense-error-some-dll-files-are-missing/]
or this [https://ph4m.wordpress.com/2014/02/11/getting-softkinetics-depthsense-sdk-to-work-on-arch-linux/]
blog post.

Furthermore, the Linux version of SDK is shipped with its own libusb-1.0.so
library. You may have this library already installed on your system (e.g.
because it is required by some other grabbers). In this case there will be
conflicts, which will manifest in a flood of CMake warnings during configuration
stage. To avoid this simply delete the corresponding files from the SDK
installation path:

$ sudo rm /opt/softkinetic/DepthSenseSDK/lib/libusb-1.0*

You can verify your installation by plugging in the camera and running the
viewer app distributed with the SDK:

$ /opt/softkinetic/DepthSenseSDK/bin/DepthSenseViewer --standalone

Windows

After the installation is completed you need to add the SDK path to the PATH
environment variable. The installation path itself is stored in
DEPTHSENSESDK64 (on a 64-bit system) environment variable, thus you need to
append ;%DEPTHSENSESDK64%\bin to your path. Do not forget to re-login for the
changes to take effect.

Verify installation by running DepthSenseViewer.exe in command prompt.

PCL configuration

You need at least PCL 1.8.0 to be able to use the DepthSense SDK. The
WITH_DSSDK option should be enabled in the CMake configuration.

DepthSense Viewer

The grabber is accompanied by an example tool pcl_depth_sense_viewer [https://github.com/PointCloudLibrary/pcl/blob/master/visualization/tools/depth_sense_viewer.cpp]
which can be used to view and save point clouds coming from a DepthSense device.
Internally it uses the DepthSenseGrabber [http://docs.pointclouds.org/trunk/classpcl_1_1_depth_sense_grabber.html]
class that implements the standard PCL grabber interface.

You can run the tool with –help option to view the usage guide.

The video below demonstrates the features of the DepthSense viewer tool. Please
note that the bilateral filtering (which can be observed in the end of the
video) is currently disabled is the tool.

 The PCL Dinast Grabber Framework

The PCL Dinast Grabber Framework

At PCL 1.7 we offer a new driver for Dinast Cameras making use of the generic grabber interface that is present since PCL 1.0. This tutorial shows, in a nutshell, how to set up the pcl grabber to obtain data from the cameras.

So far it has been currently tested with the IPA-1110, Cyclopes II [http://dinast.com/ipa-1110-cyclopes-ii/] and the IPA-1002 ng T-Less NG [http://dinast.com/ipa-1002-ng-t-less-ng-next-generation/] but it is meant to work properly on the rest of the Dinast devices, since manufacturer specifications has been taken into account.

[image: _images/dinast_cameras.png]

Small example

As the Dinast Grabber implements the generic grabber interface you will see high usage similarities with other pcl grabbers. In applications you can find a small example that contains the code required to set up a pcl::PointCloud<XYZI> callback to a Dinast camera device.

Here you can see a screenshot of the PCL Cloud Viewer showing the data from a cup laying on a table obtained through the Dinast Grabber interface:

[image: _images/dinast_cup.png]
And this is a video of the PCL Cloud Viewer showing the point cloud data corresponding to a face:

 Difference of Normals Based Segmentation

Difference of Normals Based Segmentation

In this tutorial we will learn how to use Difference of Normals features, implemented in the pcl::DifferenceOfNormalsEstimation class, for scale-based segmentation of unorganized point clouds.

This algorithm performs a scale based segmentation of the given input point cloud, finding points that belong within the scale parameters given.

[image: _images/donpipelinesmall.jpg]
Overview of the pipeline in DoN segmentation.

Contents

	Difference of Normals Based Segmentation

	Theoretical Primer

	Using Difference of Normals for Segmentation

	The Data Set

	The Code

	Compiling and running the program

	The Explanation

	Large/Small Radius Normal Estimation

	Difference of Normals Feature Calculation

	Difference of Normals Based Filtering

	Clustering the Results

	References/Further Information

Theoretical Primer

The Difference of Normals (DoN) provides a computationally efficient, multi-scale approach to processing large unorganized 3D point clouds. The idea is very simple in concept, and yet surprisingly effective in the segmentation of scenes with a wide variation of scale. For each point \(p\) in a pointcloud \(P\), two unit point normals \($\hat{\mathbf{n}}(\mathbf{p}, r_l), \hat{\mathbf{n}}(\mathbf{p}, r_s)$\) are estimated with different radii, \($r_l > r_s$\) . The normalized (vector) difference of these point normals defines the operator.

Formally the Difference of Normals operator is defined,

\(\mathbf{\Delta}\mathbf{\hat{n}}(p, r_s, r_l) = \frac{\mathbf{\hat{n}}(p, r_s) - \mathbf{\hat{n}}(p, r_l)}{2}\)

where \($r_s, r_l \in \mathbb{R}$\), \($r_s<r_l$\), and \($\mathbf{\hat{n}}(p, r)$\) is the surface normal estimate at point \(p\), given the support radius \(r\). Notice, the response of the operator is a normalized vector field, and is thus orientable (the resulting direction is a key feature), however the operator’s norm often provides an easier quantity to work with, and is always in the range \((0,1)\).

[image: Illustration of the effect of support radius on estimated surface normals for a point cloud.]Illustration of the effect of support radius on estimated surface normals for a point cloud.

The primary motivation behind DoN is the observation that surface normals estimated at any given radius reflect the underlying geometry of the surface at the scale of the support radius. Although there are many different methods of estimating the surface normals, normals are always estimated with a support radius (or via a fixed number of neighbours). This support radius determines the scale in the surface structure which the normal represents.

The above diagram illustrates this effect in 1D. Normals, \($\mathbf{\hat{n}}$\), and tangents, \(T\), estimated with a small support radius \(r_s\) are affected by small-scale surface structure (and similarly by noise). On the other hand, normals and tangent planes estimated with a large support radius r_l are less affected by small-scale structure, and represent the geometry of larger scale surface structures. In fact a similar set of features is seen in the DoN feature vectors for real-world street curbs in a LiDAR image shown below.

[image: _images/don_curb_closeup_small.jpg]
Closeup of the DoN feature vectors calculated for a LiDAR pointcloud of a street curb.

For more comprehensive information, please refer to the article [DON2012].

Using Difference of Normals for Segmentation

For segmentation we simply perform the following:

	Estimate the normals for every point using a large support radius of \(r_l\)

	Estimate the normals for every point using the small support radius of \(r_s\)

	For every point the normalized difference of normals for every point, as defined above.

	Filter the resulting vector field to isolate points belonging to the scale/region of interest.

The Data Set

For this tutorial we suggest the use of publicly available (creative commons licensed) urban LiDAR data from the [KITTI] project. This data is collected from a Velodyne LiDAR scanner mounted on a car, for the purpose of evaluating self-driving cars. To convert the data set to PCL compatible point clouds please see [KITTIPCL]. Examples and an example data set will be posted here in future as part of the tutorial.

The Code

Next what you need to do is to create a file don_segmentation.cpp in any editor you prefer and copy the following code inside of it:

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

Create a build directory, and build the executable:

$ mkdir build
$ cd build
$ cmake ..
$ make

After you have made the executable, you can run it. Simply run:

$./don_segmentation <inputfile> <smallscale> <largescale> <threshold> <segradius>

The Explanation

Large/Small Radius Normal Estimation

We will skip the code for loading files and parsing command line arguments, and go straight to the first major PCL calls. For our later calls to calculate normals, we need to create a search tree. For organized data (i.e. a depth image), a much faster search tree is the OrganizedNeighbor search tree. For unorganized data, i.e. LiDAR scans, a KDTree is a good option.

This is perhaps the most important section of code, estimating the normals. This is also the bottleneck computationally, and so we will use the pcl::NormalEstimationOMP class which makes use of OpenMP to use many threads to calculate the normal using the multiple cores found in most modern processors. We could also use the standard single-threaded class pcl::NormalEstimation, or even the GPU accelerated class pcl::gpu::NormalEstimation. Whatever class we use, it is important to set an arbitrary viewpoint to be used across all the normal calculations - this ensures that normals estimated at different scales share a consistent orientation.

Note

For information and examples on estimating normals, normal ambiguity, and the different normal estimation methods in PCL, please read the Estimating Surface Normals in a PointCloud tutorial.

Next we calculate the normals using our normal estimation class for both the large and small radius. It is important to use the NormalEstimation.setRadiusSearch() method v.s. the NormalEstimation.setMaximumNeighbours() method or equivalent. If the normal estimate is restricted to a set number of neighbours, it may not be based on the complete surface of the given radius, and thus is not suitable for the Difference of Normals features.

Note

For large supporting radii in dense point clouds, calculating the normal would be a very computationally intensive task potentially utilizing thousands of points in the calculation, when hundreds are more than enough for an accurate estimate. A simple method to speed up the calculation is to uniformly subsample the pointcloud when doing a large radius search, see the full example code in the PCL distribution at examples/features/example_difference_of_normals.cpp for more details.

Difference of Normals Feature Calculation

We can now perform the actual Difference of Normals feature calculation using our normal estimates. The Difference of Normals result is a vector field, so we initialize the point cloud to store the results in as a pcl::PointNormal point cloud, and copy the points from our input pointcloud over to it, so we have what may be regarded as an uninitialized vector field for our point cloud.

We instantiate a new pcl::DifferenceOfNormalsEstimation class to take care of calculating the Difference of Normals vector field.

The pcl::DifferenceOfNormalsEstimation class has 3 template parameters, the first corresponds to the input point cloud type, in this case pcl::PointXYZRGB, the second corresponds to the type of the normals estimated for the point cloud, in this case pcl::PointNormal, and the third corresponds to the vector field output type, in this case also pcl::PointNormal. Next we set the input point cloud and give both of the normals estimated for the point cloud, and check that the requirements for computing the features are satisfied using the pcl::DifferenceOfNormalsEstimation::initCompute() method. Finally we compute the features by calling the pcl::DifferenceOfNormalsEstimation::computeFeature() method.

Note

The pcl::DifferenceOfNormalsEstimation class expects the given point cloud and normal point clouds indices to match, i.e. the first point in the input point cloud’s normals should also be the first point in the two normal point clouds.

Difference of Normals Based Filtering

While we now have a Difference of Normals vector field, we still have the complete point set. To begin the segmentation process, we must actually discriminate points based on their Difference of Normals vector result. There are a number of common quantities you may want to try filtering by:

	Quantity

	PointNormal Field

	Description

	Usage Scenario

	\(\mathbf{\Delta}\mathbf{\hat{n}}(p, r_s, r_l)\)

	float normal[3]

	DoN vector

	Filtering points by relative DoN angle.

	\(|\mathbf{\Delta}\mathbf{\hat{n}}(p, r_s, r_l)| \in (0,1)\)

	float curvature

	DoN \(l_2\) norm

	Filtering points by scale membership, large magnitude
indicates point has a strong response at then given
scale parameters

	\(\mathbf{\Delta}\mathbf{\hat{n}}(p, r_s, r_l)_x \in (-1,1)\),

	float normal[0]

	DoN vector x component

	Filtering points by orientable scale, i.e. building
facades with large
large \(|{\mathbf{\Delta}\mathbf{\hat{n}}}_x|\)
and/or \(|{\mathbf{\Delta}\mathbf{\hat{n}}}_y|\) and
small \(|{\mathbf{\Delta}\mathbf{\hat{n}}}_z|\)

	\(\mathbf{\Delta}\mathbf{\hat{n}}(p, r_s, r_l)_y \in (-1,1)\),

	float normal[1]

	DoN vector y component

	\(\mathbf{\Delta}\mathbf{\hat{n}}(p, r_s, r_l)_z \in (-1,1)\),

	float normal[2]

	DoN vector z component

In this example we will do a simple magnitude threshold, looking for objects of a scale regardless of their orientation in the scene. To do so, we must create a conditional filter:

After we apply the filter we are left with a reduced pointcloud consisting of the points with a strong response with the given scale parameters.

Note

For more information on point cloud filtering and building filtering conditions, please read the Removing outliers using a ConditionalRemoval filter tutorial.

Clustering the Results

Finally, we are usually left with a number of objects or regions with good isolation, allowing us to use a simple clustering algorithm to segment the results. In this example we used Euclidean Clustering with a threshold equal to the small radius parameter.

Note

For more information on point cloud clustering, please read the Euclidean Cluster Extraction tutorial.

After the segmentation the cloud viewer window will be opened and you will see something similar to those images:

[image: _images/don_clusters.jpg]

References/Further Information

	DON2012

	“Difference of Normals as a Multi-Scale Operator in Unorganized Point Clouds” <http://arxiv.org/abs/1209.1759>.

Note

@ARTICLE{2012arXiv1209.1759I,
author = {{Ioannou}, Y. and {Taati}, B. and {Harrap}, R. and {Greenspan}, M.},
title = “{Difference of Normals as a Multi-Scale Operator in Unorganized Point Clouds}”,
journal = {ArXiv e-prints},
archivePrefix = “arXiv”,
eprint = {1209.1759},
primaryClass = “cs.CV”,
keywords = {Computer Science - Computer Vision and Pattern Recognition},
year = 2012,
month = sep,
}

	KITTI

	“The KITTI Vision Benchmark Suite” <http://www.cvlibs.net/datasets/kitti/>.

	KITTIPCL

	“KITTI PCL Toolkit” <https://github.com/yanii/kitti-pcl>

 Grabbing point clouds from Ensenso cameras

Grabbing point clouds from Ensenso cameras

In this tutorial we will learn how to use the IDS-Imaging [http://en.ids-imaging.com/] Ensenso cameras within PCL. This tutorial will show you how to configure PCL
and how to use the examples to fetch point clouds from the Ensenso [http://www.ensenso.de/].

Contents

	Grabbing point clouds from Ensenso cameras

	Install Ensenso drivers

	Configuring PCL

	Using the example

	Extrinsic calibration

Install Ensenso drivers

The Ensenso drivers are free (as in beer) and available for download, for each of them follow the instructions provided:

	uEye [http://en.ids-imaging.com/download-ueye.html]

	Ensenso SDK [http://www.ensenso.de/download]

Plug-in the camera and test if the Ensenso is working, launch nxView in your terminal to check if you can actually use the camera.

Configuring PCL

You need at least PCL 1.8.0 to be able to use the Ensenso cameras. You need to make sure WITH_ENSENSO is set to true in the CMake
configuration (it should be set to true by default if you have followed the instructions before).

The default following values can be tweaked into cmake if you don’t have a standard installation, for example:

You can deactivate building the Ensenso support by setting WITH_ENSENSO to false.
Compile and install PCL.

Using the example

The pcl_ensenso_viewer [https://github.com/PointCloudLibrary/pcl/blob/master/visualization/tools/ensenso_viewer.cpp] example shows how to
display a point cloud grabbed from an Ensenso device using the EnsensoGrabber [http://docs.pointclouds.org/trunk/classpcl_1_1_ensenso_grabber.html] class.

Note that this program opens the TCP port of the nxLib tree, this allows you to open the nxLib tree with the nxTreeEdit program (port 24000).
The capture parameters (exposure, gain etc..) are set to default values.
If you have performed and stored an extrinsic calibration it will be temporary reset.

If you are using an Ensenso X device you have to calibrate the device before trying to run the PCL driver. If you don’t you will get an error like this:

ensenso_ptr->enumDevices ();
ensenso_ptr->openTcpPort ();
ensenso_ptr->openDevice ();
ensenso_ptr->configureCapture ();
ensenso_ptr->setExtrinsicCalibration ();

The code is very similar to the pcl_openni_viewer.
All the Ensenso devices connected are listed and then the point cloud are fetched as fast as possible.

Here is an example of the terminal output

$ pcl_ensenso_viewer
Initialising nxLib
Number of connected cameras: 1
Serial No Model Status
140242 N10-1210-18 Available

Opening Ensenso stereo camera id = 0
FPS: 3.32594
FPS: 3.367
FPS: 3.79441
FPS: 4.01204
FPS: 4.07747
FPS: 4.20309
Closing Ensenso stereo camera

[image: _images/ensenso_viewer.jpg]
Another example is available in PCL sources [https://github.com/PointCloudLibrary/pcl/blob/master/doc/tutorials/content/sources/ensenso_cameras/], it uses OpenCV to display Ensenso
images and the PCLVisualizer to display the point cloud at the same time.

Extrinsic calibration

If you want to perform extrinsic calibration of the sensor, please first make sure your EnsensoSDK version is greater than 1.3.
A fully automated extrinsic calibration ROS package is available to help you calibrate the sensor mounted on a robot arm,
the package can be found in the Institut Maupertuis repository [https://gitlab.com/InstitutMaupertuis/ensenso_extrinsic_calibration].

The following video shows the automatic calibration procedure on a Fanuc R1000iA 80f industrial robot:

 Extracting indices from a PointCloud

Extracting indices from a PointCloud

In this tutorial we will learn how to use an :pcl:`ExtractIndices <pcl::ExtractIndices>` filter to extract a subset of
points from a point cloud based on the indices output by a segmentation algorithm. In order to not complicate the
tutorial, the segmentation algorithm is not explained here. Please check
the Plane model segmentation tutorial for more information.

 Fast Point Feature Histograms (FPFH) descriptors

Fast Point Feature Histograms (FPFH) descriptors

The theoretical computational complexity of the Point Feature Histogram (see
Point Feature Histograms (PFH) descriptors) for a given point cloud \(P\) with \(n\) points
is \(O(nk^2)\), where \(k\) is the number of neighbors for each point
\(p\) in \(P\). For real-time or near real-time applications, the
computation of Point Feature Histograms in dense point neighborhoods can
represent one of the major bottlenecks.

This tutorial describes a simplification of the PFH formulation, called Fast
Point Feature Histograms (FPFH) (see [RusuDissertation] for more information),
that reduces the computational complexity of the algorithm to \(O(nk)\),
while still retaining most of the discriminative power of the PFH.

Theoretical primer

To simplify the histogram feature computation, we proceed as follows:

	in a first step, for each query point \(p_q\) a set of tuples
\(\alpha, \phi, \theta\) between itself and its neighbors are computed
as described in Point Feature Histograms (PFH) descriptors - this will be called the Simplified
Point Feature Histogram (SPFH);

	in a second step, for each point its k neighbors are re-determined, and the
neighboring SPFH values are used to weight the final histogram of pq
(called FPFH) as follows:

\[FPFH(\boldsymbol{p}_q) = SPFH(\boldsymbol{p}_q) + {1 \over k} \sum_{i=1}^k {{1 \over \omega_k} \cdot SPFH(\boldsymbol{p}_k)}\]

where the weight \(\omega_k\) represents a distance between the query point
\(p_q\) and a neighbor point \(p_k\) in some given metric space, thus
scoring the (\(p_q, p_k\)) pair, but could just as well be selected as a
different measure if necessary. To understand the importance of this weighting
scheme, the figure below presents the influence region diagram for a
k-neighborhood set centered at \(p_q\).

[image: _images/fpfh_diagram.png]
Thus, for a given query point \(p_q\), the algorithm first estimates its
SPFH values by creating pairs between itself and its neighbors (illustrated
using red lines). This is repeated for all the points in the dataset, followed
by a re-weighting of the SPFH values of pq using the SPFH values of its
\(p_k\) neighbors, thus creating the FPFH for \(p_q\). The extra FPFH
connections, resultant due to the additional weighting scheme, are shown with
black lines. As the diagram shows, some of the value pairs will be counted
twice (marked with thicker lines in the figure).

Differences between PFH and FPFH

The main differences between the PFH and FPFH formulations are summarized below:

	the FPFH does not fully interconnect all neighbors of \(p_q\) as it
can be seen from the figure, and is thus missing some value pairs which
might contribute to capture the geometry around the query point;

	the PFH models a precisely determined surface around the query point,
while the FPFH includes additional point pairs outside the r radius
sphere (though at most 2r away);

	because of the re-weighting scheme, the FPFH combines SPFH values and
recaptures some of the point neighboring value pairs;

	the overall complexity of FPFH is greatly reduced, thus making possible to
use it in real-time applications;

	the resultant histogram is simplified by decorrelating the values, that is
simply creating d separate feature histograms, one for each feature
dimension, and concatenate them together (see figure below).

[image: _images/fpfh_theory.jpg]

Estimating FPFH features

Fast Point Feature Histograms are implemented in PCL as part of the
pcl_features [http://docs.pointclouds.org/trunk/a02944.html]
library.

The default FPFH implementation uses 11 binning subdivisions (e.g., each of the
four feature values will use this many bins from its value interval), and a
decorrelated scheme (see above: the feature histograms are computed separately
and concantenated) which results in a 33-byte array of float values. These are
stored in a pcl::FPFHSignature33 point type.

The following code snippet will estimate a set of FPFH features for all the
points in the input dataset.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	#include <pcl/point_types.h>
#include <pcl/features/fpfh.h>

{
 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
 pcl::PointCloud<pcl::Normal>::Ptr normals (new pcl::PointCloud<pcl::Normal> ());

 ... read, pass in or create a point cloud with normals ...
 ... (note: you can create a single PointCloud<PointNormal> if you want) ...

 // Create the FPFH estimation class, and pass the input dataset+normals to it
 pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> fpfh;
 fpfh.setInputCloud (cloud);
 fpfh.setInputNormals (normals);
 // alternatively, if cloud is of tpe PointNormal, do fpfh.setInputNormals (cloud);

 // Create an empty kdtree representation, and pass it to the FPFH estimation object.
 // Its content will be filled inside the object, based on the given input dataset (as no other search surface is given).
 pcl::search::KdTree<PointXYZ>::Ptr tree (new pcl::search::KdTree<PointXYZ>);

 fpfh.setSearchMethod (tree);

 // Output datasets
 pcl::PointCloud<pcl::FPFHSignature33>::Ptr fpfhs (new pcl::PointCloud<pcl::FPFHSignature33> ());

 // Use all neighbors in a sphere of radius 5cm
 // IMPORTANT: the radius used here has to be larger than the radius used to estimate the surface normals!!!
 fpfh.setRadiusSearch (0.05);

 // Compute the features
 fpfh.compute (*fpfhs);

 // fpfhs->points.size () should have the same size as the input cloud->points.size ()*
}

The actual compute call from the FPFHEstimation class does nothing internally but:

for each point p in cloud P

 1. pass 1:

 1. get the nearest neighbors of :math:`p`

 2. for each pair of :math:`p, p_k` (where :math:`p_k` is a neighbor of :math:`p`, compute the three angular values

 3. bin all the results in an output SPFH histogram

 2. pass 2:

 1. get the nearest neighbors of :math:`p`

 3. use each SPFH of :math:`p` with a weighting scheme to assemble the FPFH of :math:`p`:

Note

For efficiency reasons, the compute method in FPFHEstimation does not check if the normals contains NaN or infinite values.
Passing such values to compute() will result in undefined output.
It is advisable to check the normals, at least during the design of the processing chain or when setting the parameters.
This can be done by inserting the following code before the call to compute():

for (int i = 0; i < normals->points.size(); i++)
{
 if (!pcl::isFinite<pcl::Normal>(normals->points[i]))
 {
 PCL_WARN("normals[%d] is not finite\n", i);
 }
}

In production code, preprocessing steps and parameters should be set so that normals are finite or raise an error.

Speeding FPFH with OpenMP

For the speed-savvy users, PCL provides an additional implementation of FPFH
estimation which uses multi-core/multi-threaded paradigms using OpenMP to speed
the computation. The name of the class is pcl::FPFHEstimationOMP, and its
API is 100% compatible to the single-threaded pcl::FPFHEstimation, which
makes it suitable as a drop-in replacement. On a system with 8 cores, you
should get anything between 6-8 times faster computation times.

 Globally Aligned Spatial Distribution (GASD) descriptors

Globally Aligned Spatial Distribution (GASD) descriptors

This document describes the Globally Aligned Spatial Distribution ([GASD]) global descriptor to be used for efficient object recognition and pose estimation.

GASD is based on the estimation of a reference frame for the whole point cloud that represents an object instance, which is used for aligning it with the canonical coordinate system. After that, a descriptor is computed for the aligned point cloud based on how its 3D points are spatially distributed. Such descriptor may also be extended with color distribution throughout the aligned point cloud. The global alignment transforms of matched point clouds are used for computing object pose. For more information please see [GASD].

Theoretical primer

The Globally Aligned Spatial Distribution (or GASD) global description method takes as input a 3D point cloud that represents a partial view of a given object. The first step consists in estimating a reference frame for the point cloud, which allows the computation of a transform that aligns it to the canonical coordinate system, making the descriptor pose invariant. After alignment, a shape descriptor is computed for the point cloud based on the spatial distribution of the 3D points. Color distribution along the point cloud can also be taken into account for obtaining a shape and color descriptor with a higher discriminative power. Object recognition is then performed by matching query and train descriptors of partial views. The pose of each recognized object is also computed from the alignment transforms of matched query and train partial views.

The reference frame is estimated using a Principal Component Analysis (PCA) approach. Given a set of 3D points \(\boldsymbol{P_i}\) that represents a partial view of an object, with \(i\in\{1, ..., n\}\), the first step consists in computing their centroid \(\boldsymbol{\overline{P}}\), which is the origin of the reference frame. Then a covariance matrix \(\boldsymbol{C}\) is computed from \(\boldsymbol{P_i}\) and \(\boldsymbol{\overline{P}}\) as follows:

\[\boldsymbol{C}=\frac{1}{n}\sum_{i=1}^{n}(\boldsymbol{P_i}-\boldsymbol{\overline{P}})(\boldsymbol{P_i}-\boldsymbol{\overline{P}})^T.\]

After that, the eigenvalues \(\lambda_j\) and corresponding eigenvectors \(\boldsymbol{v_j}\) of \(\boldsymbol{C}\) are obtained, with \(j\in\{1, 2, 3\}\), such that \(\boldsymbol{C}\boldsymbol{v_j}=\lambda_j\boldsymbol{v_j}\). Considering that the eigenvalues are arranged in ascending order, the eigenvector \(\boldsymbol{v_1}\) associated with the minimal eigenvalue is used as the \(z\) axis of the reference frame. If the angle between \(\boldsymbol{v_1}\) and the viewing direction is in the \([-90^{\circ}, 90^{\circ}]\) range, then \(\boldsymbol{v_1}\) is negated. This ensures that the \(z\) axis always points towards the viewer. The \(x\) axis of the reference frame is the eigenvector \(\boldsymbol{v_3}\) associated with the maximal eigenvalue. The \(y\) axis is given by \(\boldsymbol{v_2}=\boldsymbol{v_1}\times\boldsymbol{v_3}\).

From the reference frame, it is possible to compute a transform \([\boldsymbol{R} | \boldsymbol{t}]\) that aligns it with the canonical coordinate system. All the points \(\boldsymbol{P_i}\) of the partial view are then transformed with \([\boldsymbol{R} | \boldsymbol{t}]\), which is defined as follows:

\[\begin{split}\begin{bmatrix}
\boldsymbol{R} & \boldsymbol{t} \\
\boldsymbol{0} & 1
\end{bmatrix}=
\begin{bmatrix}
\boldsymbol{v_3}^T & -\boldsymbol{v_3}^T\boldsymbol{\overline{P}} \\
\boldsymbol{v_2}^T & -\boldsymbol{v_2}^T\boldsymbol{\overline{P}} \\
\boldsymbol{v_1}^T & -\boldsymbol{v_1}^T\boldsymbol{\overline{P}} \\
\boldsymbol{0} & 1
\end{bmatrix}.\end{split}\]

Once the point cloud is aligned using the reference frame, a pose invariant global shape descriptor can be computed from it. The point cloud axis-aligned bounding cube centered on the origin is divided into an \(m_s \times m_s \times m_s\) regular grid. For each grid cell, a histogram with \(l_s\) bins is computed. If \(l_s=1\), then each histogram bin will store the number of points that belong to its correspondent cell in the 3D regular grid. If \(l_s>1\), then for each cell it will be computed a histogram of normalized distances between each sample and the cloud centroid.

The contribution of each sample to the histogram is normalized with respect to the total number of points in the cloud. Optionally, interpolation may be used to distribute the value of each sample into adjacent cells, in an attempt to avoid boundary effects that may cause abrupt changes to the histogram when a sample shifts from being within one cell to another. The descriptor is then obtained by concatenating the computed histograms.

[image: _images/grid.png]
[image: _images/grid_top_side_bottom_view.png]
Color information can also be incorporated to the descriptor in order to increase its discriminative power. The color component of the descriptor is computed with an \(m_c \times m_c \times m_c\) grid similar to the one used for the shape component, but a color histogram is generated for each cell based on the colors of the points that belong to it. Point cloud color is represented in the HSV space and the hue values are accumulated in histograms with \(l_c\) bins. Similarly to shape component computation, normalization with respect to number of points is performed. Additionally, interpolation of histograms samples may also be performed. The shape and color components are concatenated, resulting in the final descriptor.

Query and train descriptors are matched using a nearest neighbor search approach. After that, for each matched object instance, a coarse pose is computed using the alignment transforms obtained from the reference frames of the respective query and train partial views. Given the transforms \([\mathbf{R_{q}} | \mathbf{t_{q}}]\) and \([\mathbf{R_{t}} | \mathbf{t_{t}}]\) that align the query and train partial views, respectively, the object coarse pose \([\mathbf{R_{c}} | \mathbf{t_{c}}]\) is obtained by

\[\begin{split}\begin{bmatrix}
\mathbf{R_{c}} & \mathbf{t_{c}} \\
\mathbf{0} & 1
\end{bmatrix}=
{\begin{bmatrix}
\mathbf{R_{q}} & \mathbf{t_{q}} \\
\mathbf{0} & 1
\end{bmatrix}}^{-1}
\begin{bmatrix}
\mathbf{R_{t}} & \mathbf{t_{t}} \\
\mathbf{0} & 1
\end{bmatrix}.\end{split}\]

The coarse pose \([\mathbf{R_{c}} | \mathbf{t_{c}}]\) can then be refined using the Iterative Closest Point (ICP) algorithm.

Estimating GASD features

The Globally Aligned Spatial Distribution is implemented in PCL as part of the
pcl_features [http://docs.pointclouds.org/trunk/group__features.html]
library.

The default values for color GASD parameters are: \(m_s=6\) (half size of 3), \(l_s=1\), \(m_c=4\) (half size of 2) and \(l_c=12\) and no histogram interpolation (INTERP_NONE). This results in an array of 984 float values. These are stored in a pcl::GASDSignature984 point type. The default values for shape only GASD parameters are: \(m_s=8\) (half size of 4), \(l_s=1\) and trilinear histogram interpolation (INTERP_TRILINEAR). This results in an array of 512 float values, which may be stored in a pcl::GASDSignature512 point type. It is also possible to use quadrilinear histogram interpolation (INTERP_QUADRILINEAR).

The following code snippet will estimate a GASD shape + color descriptor for an input colored point cloud.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	#include <pcl/point_types.h>
#include <pcl/features/gasd.h>

{
 pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZRGBA>);

 ... read, pass in or create a point cloud ...

 // Create the GASD estimation class, and pass the input dataset to it
 pcl::GASDColorEstimation<pcl::PointXYZRGBA, pcl::GASDSignature984> gasd;
 gasd.setInputCloud (cloud);

 // Output datasets
 pcl::PointCloud<pcl::GASDSignature984> descriptor;

 // Compute the descriptor
 gasd.compute (descriptor);

 // Get the alignment transform
 Eigen::Matrix4f trans = gasd.getTransform (trans);

 // Unpack histogram bins
 for (std::size_t i = 0; i < std::size_t(descriptor[0].descriptorSize ()); ++i)
 {
 descriptor[0].histogram[i];
 }
}

The following code snippet will estimate a GASD shape only descriptor for an input point cloud.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	#include <pcl/point_types.h>
#include <pcl/features/gasd.h>

{
 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);

 ... read, pass in or create a point cloud ...

 // Create the GASD estimation class, and pass the input dataset to it
 pcl::GASDEstimation<pcl::PointXYZ, pcl::GASDSignature512> gasd;
 gasd.setInputCloud (cloud);

 // Output datasets
 pcl::PointCloud<pcl::GASDSignature512> descriptor;

 // Compute the descriptor
 gasd.compute (descriptor);

 // Get the alignment transform
 Eigen::Matrix4f trans = gasd.getTransform (trans);

 // Unpack histogram bins
 for (std::size_t i = 0; i < std::size_t(descriptor[0].descriptorSize ()); ++i)
 {
 descriptor[0].histogram[i];
 }
}

	GASD(1,2)

	http://www.cin.ufpe.br/~jpsml/uploads/8/2/6/7/82675770/pid4349755.pdf

Note

@InProceedings{Lima16SIBGRAPI,
author = {Joao Paulo Lima and Veronica Teichrieb},
title = {An Efficient Global Point Cloud Descriptor for Object Recognition and Pose Estimation},
booktitle = {Proceedings of the 29th SIBGRAPI - Conference on Graphics, Patterns and Images},
year = {2016},
address = {Sao Jose dos Campos, Brazil},
month = {October}
}

 Tutorial: Hypothesis Verification for 3D Object Recognition

Tutorial: Hypothesis Verification for 3D Object Recognition

This tutorial aims at explaining how to do 3D object recognition in clutter by verifying model hypotheses
in cluttered and heavily occluded 3D scenes. After descriptor matching, the tutorial runs one of the
Correspondence Grouping algorithms available in PCL in order to cluster the set of point-to-point
correspondences, determining instances of object hypotheses in the scene. On these hypotheses,
the Global Hypothesis Verification algorithm is applied in order to
decrease the amount of false positives.

Suggested readings and prerequisites

This tutorial is the follow-up of a previous tutorial on object recognition: 3D Object Recognition based on Correspondence Grouping
To understand this tutorial, we suggest first to read and understand that tutorial.

More details on the Global Hypothesis Verification method can be found here:
A. Aldoma, F. Tombari, L. Di Stefano, M. Vincze, A global hypothesis verification method for 3D object recognition, ECCV 2012

For more information on 3D Object Recognition in Clutter and on the standard feature-based recognition pipeline, we suggest this tutorial paper:
A. Aldoma, Z.C. Marton, F. Tombari, W. Wohlkinger, C. Potthast, B. Zeisl, R.B. Rusu, S. Gedikli, M. Vincze, “Point Cloud Library: Three-Dimensional Object Recognition and 6 DOF Pose Estimation”, IEEE Robotics and Automation Magazine, 2012

The Code

Before starting, you should download from the GitHub folder: Correspondence Grouping [https://github.com/PointCloudLibrary/data/tree/master/tutorials/correspondence_grouping] the example PCD clouds
used in this tutorial (milk.pcd and milk_cartoon_all_small_clorox.pcd), and place the files in the source older.

Then copy and paste the following code into your editor and save it as global_hypothesis_verification.cpp.

Walkthrough

Take a look at the various parts of the code to see how it works.

Input Parameters

showHelp function prints out the input parameters accepted by the program. parseCommandLine binds the user input with program parameters.

The only two mandatory parameters are model_filename and scene_filename (all other parameters are initialized with a default value).
Other usefuls commands are:

	--algorithm (Hough|GC) used to switch clustering algorithm. See 3D Object Recognition based on Correspondence Grouping.

	-k shows the keypoints used to compute the correspondences

Hypotheses Verification parameters are:

	--hv_clutter_reg val: Clutter Regularizer (default 5.0)

	--hv_inlier_th val: Inlier threshold (default 0.005)

	--hv_occlusion_th val: Occlusion threshold (default 0.01)

	--hv_rad_clutter val: Clutter radius (default 0.03)

	--hv_regularizer val: Regularizer value (default 3.0)

	--hv_rad_normals val: Normals radius (default 0.05)

	--hv_detect_clutter val: TRUE if clutter detect enabled (default true)

More details on the Global Hypothesis Verification parameters can be found here:
A. Aldoma, F. Tombari, L. Di Stefano, M. Vincze, A global hypothesis verification method for 3D object recognition, ECCV 2012.

Helpers

This simple struct is used to create Color presets for the clouds being visualized.

Clustering

The code below implements a full Clustering Pipeline: the input of the pipeline is a pair of point clouds (the model and the scene), and the output is

std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > rototranslations;

rototraslations represents a list of coarsely transformed models (“object hypotheses”) in the scene.

Take a look at the full pipeline:

For a full explanation of the above code see 3D Object Recognition based on Correspondence Grouping [http://pointclouds.org/documentation/tutorials/correspondence_grouping.php].

Model-in-Scene Projection

To improve the coarse transformation associated to each object hypothesis, we apply some ICP iterations.
We create a instances list to store the “coarse” transformations :

then, we run ICP on the instances wrt. the scene to obtain the registered_instances:

Hypotheses Verification

GlobalHypothesesVerification takes as input a list of registered_instances and a scene so we can verify() them
to get a hypotheses_mask: this is a bool array where hypotheses_mask[i] is TRUE if registered_instances[i] is a
verified hypothesis, FALSE if it has been classified as a False Positive (hence, must be rejected).

Visualization

The first part of the Visualization code section is pretty simple, with -k options the program displays goog keypoints in model and in scene
with a styleViolet color.

Later we iterate on instances, and each instances[i] will be displayed in Viewer with a styleRed color.
Each registered_instances[i] will be displayed with two optional colors: styleGreen if the current instance is verified (hypotheses_mask[i] is TRUE), styleCyan otherwise.

Compiling and running the program

Create a CMakeLists.txt file and add the following lines into it:

After you have created the executable, you can then launch it following this example:

>>> ./global_hypothesis_verification milk.pcd milk_cartoon_all_small_clorox.pcd

[image: Original Scene Image]

Original Scene Image

[image: _images/single.png]
Valid Hypothesis (Green) with simple parameters

You can simulate more false positives by using a larger bin size parameter for the Hough Voting Correspondence Grouping algorithm:

>>> ./global_hypothesis_verification milk.pcd milk_cartoon_all_small_clorox.pcd --cg_size 0.035

[image: _images/multiple.png]
Valid Hypothesis (Green) among 9 false positives

 Configuring your PC to use your Nvidia GPU with PCL

Configuring your PC to use your Nvidia GPU with PCL

In this tutorial we will learn how to check if your PC is
suitable for use with the GPU methods provided within PCL.
This tutorial has been tested on Ubuntu 11.04 and 12.04, let
us know on the user mailing list if you have tested this on other
distributions.

The explanation

In order to run the code you’ll need a decent Nvidia GPU with Fermi or Kepler architecture you can check this by:

$ lspci | grep nVidia

This should indicate which GPU you have on your system, if you don’t have an Nvidia GPU, we’re sorry, but you
won’t be able to use PCL GPU.
The output of this you can compare with this link [http://www.nvidia.co.uk/object/cuda-parallel-computing-uk.html]
on the Nvidia website, your card should mention compute capability of 2.x (Fermi) or 3.x (Kepler) or higher.
If you want to run with a GUI, you can also run:

$ nvidia-settings

From either CLI or from your system settings menu. This should mention the same information.

First you need to test if your CPU is 32 or 64 bit, if it is 64-bit, it is preferred to work in this mode.
For this you can run:

$ lscpu | grep op-mode

As a next step you will need a up to date version of the Cuda Toolkit. You can get this
here [http://developer.nvidia.com/cuda/cuda-downloads], at the time of writing the
latest version was 4.2 and the beta release of version 5 was available as well.

First you will need to install the latest video drivers, download the correct one from the site
and run the install file, after this, download the toolkit and install it.
At the moment of writing this was version 295.41, please choose the most up to date one:

$ wget http://developer.download.nvidia.com/compute/cuda/4_2/rel/drivers/devdriver_4.2_linux_64_295.41.run

Make the driver executable:

$ chmod +x devdriver_4.2_linux_64_295.41.run

Run the driver:

$ sudo ./devdriver_4.2_linux_64_295.41.run

You need to run this script without your X-server running. You can shut your X-server down as follows:
Go to a terminal by pressing Ctrl-Alt-F1 and typing:

$ sudo service gdm stop

Once you have installed you GPU device driver you will also need to install the CUDA Toolkit:

$ wget http://developer.download.nvidia.com/compute/cuda/4_2/rel/toolkit/cudatoolkit_4.2.9_linux_64_ubuntu11.04.run
$ chmod +x cudatoolkit_4.2.9_linux_64_ubuntu11.04.run
$ sudo ./cudatoolkit_4.2.9_linux_64_ubuntu11.04.run

You can get the SDK, but for PCL this is not needed, this provides you with general CUDA examples
and some scripts to test the performance of your CPU as well as your hardware specifications.

CUDA only compiles with gcc 4.4 and lower, so if your default installed gcc is 4.5 or higher you’ll need to install gcc 4.4:

$ sudo apt-get install gcc-4.4

Now you need to force your gcc to use this version, you can remove the older version, the other option is to create a symlink in your home folder and include that in the beginning of your path:

$ cd
$ mkdir bin

Add ‘export PATH=$HOME/bin:$PATH as the last line to your ~/.bashrc file.
Now create the symlinks in your bin folder:

$ cd ~/bin
$ ln -s <your_gcc_installation> c++
$ ln -s <your_gcc_installation> cc
$ ln -s <your_gcc_installation> g++
$ ln -s <your_gcc_installation> gcc

If you use colorgcc these links all need to point to /usr/bin/colorgcc.

Now you can get the latest git master (or another one) of PCL and configure your
installation to use the CUDA functions.

Go to your PCL root folder and do:

$ mkdir build; cd build
$ ccmake ..

Press c to configure ccmake, press t to toggle to the advanced mode as a number of options
only appear in advanced mode. The latest CUDA algorithms are being kept in the GPU project, for
this the BUILD_GPU option needs to be on and the BUILD_gpu_<X> indicate the different
GPU subprojects.

[image: _images/gpu_ccmake.png]
Press c again to configure for you options, press g to generate the makefiles and to exit. Now
the makefiles have been generated successfully and can be executed by doing:

$ make

If you want to install your PCL installation for everybody to use:

$ make install

Now your installation is finished!

Tested Hardware

Please report us the hardware you have tested the following methods with.

	Method

	Hardware

	Reported FPS

	Kinfu

	GTX680, Intel Xeon CPU E5620 @ 2.40Ghz x 8, 24Gb RAM

	20-27

	
	GTX480, Intel Xeon CPU W3550 @ 3.07GHz × 4, 7.8Gb RAM

	40

	
	C2070, Intel Xeon CPU E5620 @ 2.40Ghz x 8, 24Gb RAM

	29

	People Pose Detection

	GTX680, Intel Xeon CPU E5620 @ 2.40Ghz x 8, 24Gb RAM

	20-23

	
	C2070, Intel Xeon CPU E5620 @ 2.40Ghz x 8, 24Gb RAM

	10-20

 Detecting people and their poses using PointCloud Library

Detecting people and their poses using PointCloud Library

In this tutorial we will learn how detect a person and its pose in a pointcloud.
This is based on work from Koen Buys, Cedric Cagniart, Anatoly Bashkeev and Caroline Pantofaru, this
has been presented on ICRA2012 and IROS2012 and an official reference for a journal paper is in progress. A coarse outline of how it works can be seen in the following video.

 Fast triangulation of unordered point clouds

Fast triangulation of unordered point clouds

This tutorial explains how to run a greedy surface triangulation algorithm on a
PointCloud with normals, to obtain a triangle mesh based on projections of the
local neighborhoods. An example of the method’s output can be seen here:

 Detecting people on a ground plane with RGB-D data

Detecting people on a ground plane with RGB-D data

This tutorial aims at explaining how to detect people from RGB-D data with the pcl_people module.
With the proposed method, people standing/walking on a planar ground plane can be detected in real time with standard CPU computation.
This implementation corresponds to the people detection algorithm for RGB-D data presented in

	M. Munaro and E. Menegatti. “Fast RGB-D people tracking for service robots”. In Autonomous Robots, Volume 37 Issue 3, pp. 227-242, Springer, 2014.

	M. Munaro, F. Basso and E. Menegatti. “Tracking people within groups with RGB-D data”. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS) 2012, Vilamoura (Portugal), 2012.

The code

You can download the source code for this tutorial from here,
while the file containing the needed SVM parameters can be found here.
We implemented a people detection demo from a live RGB-D stream obtained with an OpenNI-compatible sensor (Microsoft Kinect, Asus Xtion, etc.).

Here it is the code:

The explanation

Now, let’s break down the code piece by piece.

The first lines allow to print a help text showing the command line parameters that can be set when launching the executable.
No parameter is needed by default, but you can optionally set the path to the file containing the trained SVM
for people detection (--svm) and the minimum HOG confidence allowed (--conf). Moreover, the minimum (min_h) and
maximum (max_h) height of people can be set. If no parameter is set, the default values are used.

Here, the callback used for grabbing pointclouds with OpenNI is defined.

The people detection algorithm used makes the assumption that people stand/walk on a planar ground plane.
Thus, it requires to know the equation of the ground plane in order to perform people detection.
In this tutorial, the ground plane is manually initialized by the user by selecting three floor points
from the first acquired pointcloud.
In the following lines, the callback function used for ground plane initialization is shown, together with
the structure used to pass arguments to this callback.

Main:

The main program starts by initializing the main parameters and reading the command line options.

Ground initialization:

Then, the :pcl:`pcl::Grabber <pcl::Grabber>` object is initialized in order to acquire RGB-D pointclouds and the program waits for
the first frame.
When the first pointcloud is acquired, it is displayed in the visualizer and the user is requested to select
three floor points by pressing shift+click as reported in the figure below.
After this, Q must be pressed in order to close the visualizer and let the program continue.

[image: _images/Screen_floor.jpg]

Note

When selecting the floor points, try to click on non collinear points that are distant from each other, in order to improve
plane estimation.

Given the three points, the ground plane is estimated with a Sample Consensus approach and the plane coefficients are
written to the command window.

In the following lines, we can see the initialization of the SVM classifier by loading the pre-trained parameters
from file.
Moreover, a :pcl:`GroundBasedPeopleDetectionApp <pcl::people::GroundBasedPeopleDetectionApp>` object is declared and the main
parameters are set. In this example, we can see how to set the voxel size used for downsampling the pointcloud,
the rgb camera intrinsic parameters, the :pcl:`PersonClassifier <pcl::people::PersonClassifier>` object and the height limits.
Other parameters could be set, such as the sensor orientation. If the sensor is vertically placed, the method
setSensorPortraitOrientation should be used to enable the vertical mode in :pcl:`GroundBasedPeopleDetectionApp <pcl::people::GroundBasedPeopleDetectionApp>`.

Main loop:

In the main loop, new frames are acquired and processed until the application is terminated by the user.
The people_detector object receives as input the current cloud and the estimated ground coefficients and
computes people clusters properties, which are stored in :pcl:`PersonCluster <pcl::people::PersonCluster>` objects.
The ground plane coefficients are re-estimated at every frame by using the previous frame estimate as initial condition.
This procedure allows to adapt to small changes which can occur to the ground plane equation if the camera is slowly moving.

The last part of the code is devoted to visualization. In particular, a green 3D bounding box is drawn for every
person with HOG confidence above the min_confidence threshold. The width of the bounding box is fixed, while
the height is determined as the distance between the top point of the person cluster and the ground plane.
The average framerate is also shown every 30 frames, to evaluate the runtime performance of the application.
Please note that this framerate includes the time necessary for grabbing the point clouds and for visualization.

Compiling and running the program

Create a CMakeLists.txt file and add the following lines into it:

	After you have made the executable, you can run it. Simply do:

	$./ground_based_rgbd_people_detector

The following images show some people detection results on a Kinect RGB-D stream.
The minimum and maximum height for people were set respectively to 1.3 and 2.3 meters, while the
minimum HOG confidence was set to -1.5.

[image: _images/Screen3.jpg]
[image: _images/Screen5.jpg]
[image: _images/Screen8.jpg]
[image: _images/Screen7.jpg]

 The Velodyne High Definition LiDAR (HDL) Grabber

The Velodyne High Definition LiDAR (HDL) Grabber

The Velodyne HDL is a network-based 3D LiDAR system that produces
360 degree point clouds containing over 700,000 points every second.

The HDL Grabber provided in PCL mimics other Grabbers, making it almost
plug-and-play. Because the HDL devices are network based, however, there
are a few gotchas on some platforms.

The HDL Grabber supports the original HDL-64e as well as the HDL-32e.
More information on those sensors can be found at Velodyne’s Web Site [http://www.velodynelidar.com/]

Basic Network Setup

The Velodyne HDL uses network packets to provide range and intensity
data for each of the lasers in the device. The HDL-64e consists of
64 lasers, while the HDL-32e consists of 32.

The HDL-64e and HDL-32e, by default, produce UDP network packets
on the 192.168.3 subnet. Starting with the HDL-32e (Firmware Version 2),
the user can customize this network subnet.

The HDL can be connected either directly into your computer, or into a
network switch (to include a network switch with a built-in Wireless Access Point).
Regardless, one of your computer’s Network Interface Cards (NIC) [whether hard-wired
RJ-45 connection or wireless] needs to be configured to be on this 192.168.3 subnet.
Consult your operating system documentation on how to perform this.

In addition to the NIC settings, you may need to alter your operating system’s firewall rules. The
HDL produces packets on port 2368 (by default). The HDL-32e with Firmware Version 2
can be set to use a different port. Consult your firewall documentation to open
this port in your firewall.

Lastly, modern Linux kernels have advanced network attack guards that go beyond basic firewall
rules. The HDL-32e produces UDP packets that may be filtered by the OS using one of these
attack guards. You will need to disable the rp_filter guard for the appropriate NIC.
For more information on how to disable this filter, please see the section below entitled
Disabling Reverse Path Filter

PCAP Files

Wireshark [http://www.wireshark.org/] is a popular Network Packet Analyzer Program which
is available for most platforms, including Linux, MacOS and Windows. This tool uses a defacto
standard network packet capture file format called PCAP [http://en.wikipedia.org/wiki/Pcap].
Many publicly available Velodyne HDL packet captures use this PCAP file format as a means of
recording and playback. These PCAP files can be used with the HDL Grabber if PCL is compiled with
PCAP support.

Velodyne provides sample PCAP files on their website [http://midas3.kitware.com/midas/community/29]

Compiling the HDL Grabber with PCAP support

On Linux, this involves installing libpcap-dev (Ubuntu) or libpcap-devel (Fedora). CMake should
find the pcap libraries, and automatically configure PCL to use them.

On Windows, this involves installing both the WinPCAP installer [http://www.winpcap.org/install/default.htm]
and the WinPCAP developer’s pack [http://www.winpcap.org/devel.htm]. You will also need to set an
environment variable PCAPDIR to the directory where you unzipped the developer’s pack. Once that is
done, you should be able to run CMake again, and it should locate the appropriate files.

Note - You do not need to compile the HDL Grabber with support for PCAP. It is only required if
you will be replaying PCAP files through the grabber.

Sample Program

In visualization, there is a very short piece of code which contains all that
is required to set up a pcl::PointCloud<XYZ>, pcl::PointCloud<XYZI> or *pcl::PointCloud<XYZRGB>
cloud callback.

Here is a screenshot of the PCL HDL Viewer in action, which uses the HDL Grabber.

[image: _images/pcl_hdl_viewer.png]
So let’s look at the code. The following represents a simplified version of visualization/tools/hdl_viewer_simple.cpp

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101

	#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/io/hdl_grabber.h>
#include <pcl/visualization/point_cloud_color_handlers.h>
#include <pcl/visualization/cloud_viewer.h>
#include <pcl/console/parse.h>

using namespace std;
using namespace pcl::console;
using namespace pcl::visualization;

class SimpleHDLViewer
{
 public:
 typedef pcl::PointCloud<pcl::PointXYZI> Cloud;
 typedef Cloud::ConstPtr CloudConstPtr;

 SimpleHDLViewer (Grabber& grabber,
 pcl::visualization::PointCloudColorHandler<pcl::PointXYZI> &handler) :
 cloud_viewer_ (new pcl::visualization::PCLVisualizer ("PCL HDL Cloud")),
 grabber_ (grabber),
 handler_ (handler)
 {
 }

 void cloud_callback (const CloudConstPtr& cloud)
 {
 std::lock_guard<std::mutex> lock (cloud_mutex_);
 cloud_ = cloud;
 }

 void run ()
 {
 cloud_viewer_->addCoordinateSystem (3.0);
 cloud_viewer_->setBackgroundColor (0, 0, 0);
 cloud_viewer_->initCameraParameters ();
 cloud_viewer_->setCameraPosition (0.0, 0.0, 30.0, 0.0, 1.0, 0.0, 0);
 cloud_viewer_->setCameraClipDistances (0.0, 50.0);

 std::function<void (const CloudConstPtr&)> cloud_cb =
 [this] (const CloudConstPtr& cloud) { cloud_callback (cloud); };
 boost::signals2::connection cloud_connection = grabber_.registerCallback (
 cloud_cb);

 grabber_.start ();

 while (!cloud_viewer_->wasStopped ())
 {
 CloudConstPtr cloud;

 // See if we can get a cloud
 if (cloud_mutex_.try_lock ())
 {
 cloud_.swap (cloud);
 cloud_mutex_.unlock ();
 }

 if (cloud)
 {
 handler_.setInputCloud (cloud);
 if (!cloud_viewer_->updatePointCloud (cloud, handler_, "HDL"))
 cloud_viewer_->addPointCloud (cloud, handler_, "HDL");

 cloud_viewer_->spinOnce ();
 }

 if (!grabber_.isRunning ())
 cloud_viewer_->spin ();

 boost::this_thread::sleep (boost::posix_time::microseconds (100));
 }

 grabber_.stop ();

 cloud_connection.disconnect ();
 }

 pcl::visualization::PCLVisualizer::Ptr cloud_viewer_;

 pcl::Grabber& grabber_;
 std::mutex cloud_mutex_;

 CloudConstPtr cloud_;
 pcl::visualization::PointCloudColorHandler<pcl::PointXYZI> &handler_;
};

int main (int argc, char ** argv)
{
 std::string hdlCalibration, pcapFile;

 parse_argument (argc, argv, "-calibrationFile", hdlCalibration);
 parse_argument (argc, argv, "-pcapFile", pcapFile);

 pcl::HDLGrabber grabber (hdlCalibration, pcapFile);

 pcl::visualization::PointCloudColorHandlerGenericField<pcl::PointXYZI> color_handler ("intensity");

 SimpleHDLViewer<PointXYZI> v (grabber, color_handler);
 v.run ();
 return (0);
}

Additional Details

The HDL Grabber offers more than one datatype, which is the reason we made
the Grabber interface so generic, leading to the relatively complicated
lambda line. In fact, we can register the following callback types as of
this writing:

	void (const pcl::PointCloud<pcl::PointXYZRGB>::ConstPtr&)

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	cmake_minimum_required(VERSION 2.8 FATAL_ERROR)

project(pcl_hdl_viewer_simple)

find_package(PCL 1.2 REQUIRED)

include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})

add_executable(pcl_hdl_viewer_simple hdl_viewer_simple.cpp)
target_link_libraries(pcl_hdl_viewer_simple ${PCL_LIBRARIES})

Disabling Reverse Path Filter

First off, let’s understand what the Reverse Path Filter is all about. A TCP or UDP packet
contains, amongst other information, a DESTINATION IP ADDRESS and a SOURCE IP ADDRESS.
The Destination IP Address represents where the packet will go. In the case of a UDP packet, this
is usually the broadcast network IP Address (eg, 255.255.255.255 for a global broadcast, or
x.y.z.255 for a Class C Network [where x.y.z are the first three octets of a Class C network, such as
192.168.1]).

The Source IP Address, on the other hand, indicates where the packet originated from. Packets
can be hand-crafted for spoofing-type attacks (eg, pretending to come from somewhere they really
didn’t). The Reverse Path Filter attempts to detect these instances. The default rule that it uses is
that if a packet is received on Network Interface A, then if there is no route to the Source IP Address
on Network Interface A, then it will be dropped by the kernel.

So, what does this mean for the HDL-32e? Well, by default, the Source IP Address is 192.168.X.Y, where
X and Y are the last 4 digits of the device’s serial number. Remember, the default Destination IP
address for the HDL-32e is the 192.168.3 network.

If you have a single Network Interface, you will have a default route (that is a route to all other networks)
going out that single Network Interface. To receive the HDL packets, that Network Interface will need to be
on the 192.168.3 subnet. And all will be good because there is a route from your single Network Interface to
the packet’s Source IP Address, through your single Network Interface.

Ahh, but what happens when you have two Network Interfaces, for example, on to the internet, and one
dedicated to the HDL? In that case, your primary NIC will have a default route to all other networks, but
the one that is dedicated to the HDL won’t. By default, it won’t have a default route, and in fact,
it will only have a route to the 192.168.3 subnet.

That means that when the HDL packet is received by the Linux Kernel, it will determine that there is no route
from the secondary NIC back to the HDL packet Source IP Address, and drop the packet altogether.

The maddening thing about this is that if you were to run tcpdump or wireshark (two network packet sniffer programs),
you would see that the HDL packets were arriving at the NIC card! The reason for this is that programs like
tcpdump and wireshark use something called promiscuous mode that allows them to receive all packets BEFORE
the Linux Kernel does.

So, there are a couple of solutions to this problem. First, you could use a single NIC, and your computer will
be dedicated to the HDL. You won’t have to do anything except change network IP addresses when you want to
connect to an alternate network. For those that desire a second NIC, there are several options. First, you
can set up a route back to the source network that traverses the second NIC. Note, the Linux Kernel does not
actually try to connect back to the source network, it just ensures that there is a path to it. This option
works well in practice. The other option is to modify the RP Filter setting. There are two possible modes -
turn it off completely, or relax the rules to see if there is a route back to that network via any
NIC on the computer.

Here are the options again for a multi-NIC system, with corresponding Linux Commands.

	Add a route back to the HDL

First off, let’s look at the interface settings for our two NICS:

$ ifconfig

returns the following details (some items removed for brevity):

em1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 192.168.128.108 netmask 255.255.255.0 broadcast 192.168.128.255

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 192.168.3.1 netmask 255.255.255.0 broadcast 192.168.3.255

Next, let’s look at our routing table (again, some items removed for brevity):

$ route -n

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.128.1 0.0.0.0 UG 0 0 0 em1
192.168.3.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
192.168.128.0 0.0.0.0 255.255.255.0 U 0 0 0 em1

To add a route to the HDL, assume that the HDL Source IP is 192.168.12.84. You would use the
following command:

$ sudo route add -net 192.168.12.0/24 eth0

To verify that the route has been added, type the following:

$ route -n

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.128.1 0.0.0.0 UG 0 0 0 em1
192.168.3.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
192.168.12.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
192.168.128.0 0.0.0.0 255.255.255.0 U 0 0 0 em1

Now, there is a route back to the source IP address of the HDL on the same interface
that the packet came from!

However, what if, for some reason (like you already use the 192.168.12 subnet on your computer or
network, and setting the route won’t work). That’s what option #2 and #3 are for.

	Relaxing the Reverse Path Filter

TODO

	Disabling the Reverse Path Filter

TODO

Troubleshooting

Conclusion

 Construct a concave or convex hull polygon for a plane model

Construct a concave or convex hull polygon for a plane model

In this tutorial we will learn how to calculate a simple 2D hull polygon
(concave or convex) for a set of points supported by a plane.

The code

First, download the dataset table_scene_mug_stereo_textured.pcd [https://raw.github.com/PointCloudLibrary/data/master/tutorials/table_scene_mug_stereo_textured.pcd]
and save it somewhere to disk.

Then, create a file, let’s say, concave_hull_2d.cpp or
convex_hull2d.cpp in your favorite editor and place the following inside:

Note

This tutorial is written for assuming you are looking for the CONCAVE hull.
If you would like the CONVEX hull for a plane model, just replace concave
with convex at EVERY point in this tutorial, including the source file, file
names and the CMakeLists.txt file. You will also need to comment out
setAlpha(), as this is not applicable to convex hulls.

The explanation

In the following lines of code, a segmentation object is created and some
parameters are set. We use the SACMODEL_PLANE to segment this PointCloud, and
the method used to find this model is SAC_RANSAC. The actual segmentation
takes place when seg.segment (*inliers, *coefficients); is called. This
function stores all of the inlying points (on the plane) to inliers, and it
stores the coefficients to the plane (a * x + b * y + c * z = d) in
coefficients.

The next bit of code projects the inliers onto the plane model and creates
another cloud. One way that we could do this is by just extracting the inliers
that we found before, but in this case we are going to use the coefficients we
found before. We set the model type we are looking for and then set the
coefficients, and from that the object knows which points to project from
cloud_filtered to cloud_projected.

The real interesting part is in the lines below, where the ConcaveHull object
gets created and the reconstruction is performed:

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

After you have made the executable, you can run it. Simply do:

$./concave_hull_2d

You will see something similar to:

PointCloud after filtering has: 139656 data points.
PointCloud after segmentation has: 123727 inliers.
PointCloud after projection has: 139656 data points.
Concave hull has: 457 data points.

 Implicit Shape Model

Implicit Shape Model

In this tutorial we will learn how to use the implicit shape model algorithm implemented in the pcl::ism::ImplicitShapeModel class.
This algorithm was described in the article “Hough Transforms and 3D SURF for robust three dimensional classification” [http://homes.esat.kuleuven.be/~jknopp/papers/2010eccv_3d_paper.pdf] by Jan Knopp, Mukta Prasad, Geert Willems, Radu Timofte, and Luc Van Gool.
This algorithm is a combination of generalized Hough transform and the Bag of Features approach and its purpose is as follows. Having some training set - point clouds of different objects of the known class - the algorithm computes a certain model which will be later used to predict an object center in the given cloud that wasn’t a part of the training set.

Theoretical Primer

	The algorithm consists of two steps, the first one is training, and the second is recognition of the objects in the clouds that weren’t in the training set. Let’s take a look at how the training is done. It consists of six steps:

	
	First of all the keypoint detection is made. In the given implementation it’s just a simplification of the training clouds. At this step all the point clouds are simplified by the means of the voxel grid approach; remaining points are declared as keypoints.

	For every keypoint features are estimated. In the example below the FPFH estimation is used.

	All features are clustered with the help of k-means algorithm to construct a dictionary of visual (or geometric) words. Obtained clusters represent visual words. Every feature in the cluster is the instance of this visual word.

	For every single instance the direction to center is computed - a direction from the keypoint (from which the feature was obtained) to the center of mass of the given cloud.

	For each visual word the statistical weight is calculated by the formula:

\(W_{st}(c_i,v_j)=\frac{1}{n_{vw}(c_i)} \frac{1}{n_{vot}(v_j)} \frac{\frac{n_{vot}(c_i,v_j)}{n_{ftr}(c_i)}}{\sum_{c_k\in C}\frac{n_{vot}(c_k,v_j)}{n_{ftr}(c_k)}}\)
The statistical weight \(W_{st}(c_i,v_j)\) weights all the votes cast by visual word \(v_j\) for class \(c_i\). Here \(n_{vot}(v_j)\) is the total number of votes from visual word \(v_j\), \(n_{vot}(c_i,v_j)\) is the number of votes for class \(c_i\) from \(v_j\), \(n_{vw}(c_i)\) is the number of visual words that vote for class \(c_i\), \(n_{ftr}(c_i)\) is the number of features from which \(c_i\) was learned. \(C\) is the set of all classes.

	For every keypoint (point for which feature was estimated) the learned weight is calculated by the formula:

\(W_{lrn}(\lambda_{ij})=f(\{e^{-\frac{{d_a(\lambda_{ij})}^2}{\sigma^2}} \mid a \in A\})\)
Authors of the article define \(\lambda_{ij}\) as the vote cast by a particular instance of visual word \(v_j\) on a particular training shape of class \(c_i\); that is, \(\lambda_{ij}\) records the distance of the particular instance of visual word \(v_j\) to the center of the training shape on which it was found. Here \(A\) is the set of all features associated with word \(v_j\) on a shape of class \(c_i\). The recommend value for \(\sigma\) is 10% of the shape size. Function \(f\) is simply a median. \(d_a(\lambda_{ij})\) is the Euclidean distance between voted and actual center.

	After the training process is done and the trained model (weights, directions etc.) is obtained, the process of object search (or recognition) takes place. It consists of next four steps:

	
	Keypoint detection.

	Feature estimation for every keypoint of the cloud.

	For each feature the search for the nearest visual word (that is a cluster) in the dictionary is made.

	For every feature

	For every instance(which casts a vote for the class of interest) of every visual word from the trained model

	Add vote with the corresponding direction and vote power computed by the formula

\(W(\lambda_{ij})=W_{st}(v_j,c_i) * W_{lrn}(\lambda_{ij})\)

	Previous step gives us a set of directions to the expected center and the power for each vote. In order to get single point that corresponds to center these votes need to be analysed. For this purpose algorithm uses the non maxima suppression approach. User just needs to pass the radius of the object of interest and the rest will be done by the ISMVoteList::findStrongestPeaks () method.

For more comprehensive information please refer to the article
“Hough Transforms and 3D SURF for robust three dimensional classification” [http://homes.esat.kuleuven.be/~jknopp/papers/2010eccv_3d_paper.pdf].

The code

First of all you will need the set of point clouds for this tutorial - training set and set of clouds for recognition.
Below is the list of clouds that are well suited for this tutorial (they were borrowed from the Ohio dataset).

	Clouds for training:

	
	Cat (train) [https://raw.github.com/PointCloudLibrary/data/master/tutorials/ism_train_cat.pcd]

	Horse (train) [https://raw.github.com/PointCloudLibrary/data/master/tutorials/ism_train_horse.pcd]

	Lioness (train) [https://raw.github.com/PointCloudLibrary/data/master/tutorials/ism_train_lioness.pcd]

	Michael (train) [https://raw.github.com/PointCloudLibrary/data/master/tutorials/ism_train_michael.pcd]

	Wolf (train) [https://raw.github.com/PointCloudLibrary/data/master/tutorials/ism_train_wolf.pcd]

	Clouds for testing:

	
	Cat [https://raw.github.com/PointCloudLibrary/data/master/tutorials/ism_test_cat.pcd]

	Horse [https://raw.github.com/PointCloudLibrary/data/master/tutorials/ism_test_horse.pcd]

	Lioness [https://raw.github.com/PointCloudLibrary/data/master/tutorials/ism_test_lioness.pcd]

	Michael [https://raw.github.com/PointCloudLibrary/data/master/tutorials/ism_test_michael.pcd]

	Wolf [https://raw.github.com/PointCloudLibrary/data/master/tutorials/ism_test_wolf.pcd]

Next what you need to do is to create a file implicit_shape_model.cpp in any editor you prefer and copy the following code inside of it:

The explanation

Now let’s study out what is the purpose of this code. The first lines of interest are these:

These lines simply load the clouds that will be used for training. Algorithm requires normals so this is the place where they are computed.
After the loop is passed all clouds will be inserted to the training_clouds vector. training_normals and training_classes will store normals and class index for the corresponding object.

Here the instance of feature estimator is created, in our case it is the FPFH. It must be fully set up before it will be passed to the ISM algorithm. So this is the place where we define all feature estimation settings.

This line simply creates an instance of the pcl::ism::ImplicitShapeModelEstimation. It is a template class that has three parameters:

	FeatureSize - size of the features (histograms) to compute

	PointT - type of points to work with

	NormalT - type of normals to use

Here the instance is provided with the training data and feature estimator. The last line provides sampling size value used for cloud simplification as mentioned before.

These lines simply launch the training process.

Here the trained model that was obtained during the training process is saved to file for possible reuse.

The remaining part of the code may be moved with a few changes to another .cpp file and be presented as a separate program that is responsible for classification.

This line loads trained model from file. It is not necessary, because we already have the trained model. It is given to show how you can load the precomputed model.

The classification process needs the cloud and its normals as well as the training process. So these lines simply load the cloud and compute normals.

This line launches the classification process. It tells the algorithm to look for the objects of type testing_class in the given cloud testing_cloud. Notice that the algorithm will use any trained model that you will pass. After the classification is done, the list of votes for center will be returned. pcl::ism::ISMVoteList is the separate class, which purpose is to help you to analyze the votes.

These lines are responsible for finding strongest peaks among the votes. This search is based on the non-maximum suppression idea, that’s why the non-maximum radius is equal to the object radius that is taken from the trained model.

The rest of the code is simple enough. It is responsible for visualizing the cloud and computed strongest peaks which represent the estimated centers of the object of type testing_class.

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

Note that here we tell the compiler that we want a release version of the binaries, because the process of training is too slow.
After you have made the executable, you can run it. Simply do:

$./implicit_shape_model
 ism_train_cat.pcd 0
 ism_train_horse.pcd 1
 ism_train_lioness.pcd 2
 ism_train_michael.pcd 3
 ism_train_wolf.pcd 4
 ism_test_cat.pcd 0

Here you must pass the training clouds and the class of the object that it contains. The last two parameters are the cloud for testing and the class of interest that you are looking for in the testing cloud.

After the segmentation the cloud viewer window will be opened and you will see something similar to those images:

[image: _images/ism_tutorial_1.png]
[image: _images/ism_tutorial_2.png]
[image: _images/ism_tutorial_3.png]
Here the red point represents the predicted center of the object that corresponds to the class of interest.
If you will try to visualize the votes you will see something similar to this image where blue points are votes:

[image: _images/implicit_shape_model.png]

 In-hand scanner for small objects

In-hand scanner for small objects

Introduction

The purpose of the in-hand scanner application is to obtain a 3D model from a small object. The user is turning the object around in front of the sensor while the geometry is reconstructed gradually. The rest of this tutorial assumes the usage of the Kinect sensor because the parameters of the application are set up for the device.

Prerequisites

	The object should be small with a size of about 10 to 20 cm. This results in about 10000 points in each frame after the object is segmented. The application is still usable with bigger objects but becomes very slow.

	The object must be rigid because the used registration algorithm can’t align deformable objects.

	The object must have prominent geometric features because the texture is not considered during registration. For example, a symmetric bottle can’t be reconstructed.

	The incoming point cloud from the sensor must be organized. This property is needed for the normals estimation, mesh reconstruction and merging.

	The color of the object must be different from the color of the user’s hands. Alternatively it is possible to wear gloves with a different color than the object.

	No abrupt movements of the object while scanning.

How it works

The application generates an initial surface mesh and gradually integrates new points into a common model. The scanning pipeline consists of several components:

	Grabber: Communicates with the device and gives notice when new data is available.

	Input data processing:

	Computes normals for the following processing stages.

	Creates a foreground mask which stores ‘true’ if the input point is within a specified volume of interest (cropping volume). This mask is eroded a few pixels in order to remove border points.

	The foreground points are segmented into hand and object regions by applying a threshold to the color in the HSV color space. The hands region is dilated a few pixels in order to reduce the risk of accidentally including hand points into the object cloud.

	Only the object points are forwarded to the registration.

	Registration: Aligns the processed data cloud to the common model mesh using the Iterative Closest Point (ICP) algorithm. The components are:

	Fitness: Mean squared Euclidean distance of the correspondences after rejection.

	Pre-selection: Discards model points that are facing away from the sensor.

	Correspondence estimation: Nearest neighbor search using a kd-tree.

	Correspondence rejection:

	Discards correspondences with a squared Euclidean distance higher than a threshold. The threshold is initialized with infinity (no rejection in the first iteration) and set to the fitness of the last iteration multiplied by an user defined factor.

	Discards correspondences where the angle between their normals is higher than an user defined threshold.

	Transformation estimation: Minimization of the point to plane distance with the data cloud as source and model mesh as target.

	Convergence criteria:

	Epsilon: Convergence is detected when the change of the fitness between the current and previous iteration becomes smaller than an user defined epsilon value.

	Failure criteria:

	Maximum number of iterations exceeded.

	Fitness is bigger than an user defined threshold (evaluated at the state of convergence).

	Overlap between the model mesh and data cloud is smaller than an user defined threshold (evaluated at the state of convergence).

	Integration: Reconstructs an initial model mesh (unorganized) and merges the registered data clouds (organized) with the model.

	Merging is done by searching for the nearest neighbors from the data cloud to the model mesh and averaging out corresponding points if the angle between their normals is smaller than a given threshold. If the squared Euclidean distance is higher than a given squared distance threshold the data points are added to the mesh as new vertices. The organized nature of the data cloud is used to connect the faces.

	The outlier rejection is based on the assumption that outliers can’t be observed from several distinct directions. Therefore each vertex stores a visibility confidence which is the number of unique directions from which it has been recorded. The vertices get a certain amount of time (maximum age) until they have to reach a minimum visibility confidence and else are removed from the mesh again. The vertices store an age which is initialized by zero and increased in each iteration. If the vertex had a correspondence in the current merging step the age is reset to zero. This setup makes sure that vertices that are currently being merged are always kept in the mesh regardless of their visibility confidence. Once the object has been turned around certain vertices can’t be seen anymore. The age increases until they reach the maximum age when it is decided if they are kept in the mesh or removed.

The application

The following image shows the general layout of the application.

[image: Application layout]
The main canvas (1) is used for visualization of the data and for showing general information. The viewpoint can be changed with the mouse:

	Left button: Rotate

	Middle button: Pan

	Right button & mouse wheel: Move towards to or away from the pivot of the virtual camera.

The various states of the application can be triggered by keyboard shortcuts which are listed in the help (2) or shown in tooltips when moving the mouse over the buttons. Please click into the main canvas to make sure that key press events are processed (the canvas looses focus when parameters are changed in the settings).

The buttons (3) above the main canvas change the current state of the application and allow triggering certain processing steps:

	‘Input’: Shows the input cloud from the device.

	‘Processed’: Shows the cloud after it went through input data processing. The cropping volume is shown as a wireframe box. The points that are removed during color segmentation are drawn blue.

	‘Continuous registration’: Registers and integrates new data to the first acquired scan continuously until it is stopped manually.

	‘Single registration’: Registers and integrates one new frame to the common model and returns to showing the processed input data.

	‘Show model’: Shows the scanned model without further distractions.

	‘Clean’: Removes all vertices that have a low visibility confidence.

	‘Reset’: Deletes the scanned model.

The buttons (4) set how the current data is drawn.

	‘Reset camera’: Resets the camera to the viewpoint of the device.

	‘Coloring’: Toggles between several coloring modes:

	Original color of the data.

	One color for all points.

	Colormap according to the visibility confidence (red = low, green = high).

	‘Mesh representation’: Toggles the visualization type of the mesh:

	Points

	Wireframe

	Surface

The settings of the application are shown in the toolbox on the right (5). The values have been tuned for scanning small objects with the Kinect so most of them don’t have to be changed. The values that have to be adjusted before scanning are the ones in the ‘Input data processing’ tab as it is explained in the next section.

The scanned model can be saved from the menu bar (not shown).

How to use it

In the following section I will go through the steps to scan in a model of the ‘lion’ object which is about 15 cm high.

[image: Lion object.]
Once the application has connected to the device it shows the incoming data. The first step is to set up the thresholds for the object segmentation:

	Press ‘2’ to show the processed data.

	Go to the ‘Input Data Processing’ settings and adjust the values for the cropping volume and the color segmentation as shown in the next image.

	The color mask can be inverted if needed.

	Keep the ‘erode size’ as small as possible. Make the ‘dilate size’ just big enough to remove most of the points on the hands.

[image: Input data processing with the surface mesh representation.]
Now start with the continuous registration (press ‘3’). This automatically changes the coloring to a colormap according to the input confidence. The goal is to turn the object around until the whole surface becomes green. For this each point has to be recorded from as many different directions as possible. In the following image the object has been turned about the vertical axis. The newest points in the front have not been recorded by enough directions yet (red, orange, white) while the points on the right side have been scanned in sufficiently (green).

[image: Continuous registration with the coloring according to the input confidence.]
Avoid occluding the object by the hands and try to turn the object in such a way that as many geometric features of the shape are shown as possible. For example the lion object has one flat surface at the bottom (blue circle). It is not good to point this side directly towards to the sensor because the almost planar side has very few geometric features resulting in a bad alignment. Therefore it is best to include other sides while scanning as shown in the image. This procedure also helps reducing the error accumulation (loop closure problem).

[image: Geometric features.]
After all sides have been scanned the registration can be stopped by pressing ‘5’ which shows the current model. Any remaining outliers can be removed by pressing ‘6’ (clean) as shown in the next image.

[image: Geometric features.]
The eyes of the lion could not be scanned in because they were filtered out by the color segmentation. To circumvent this problem it is possible to resume the scanning procedure with the color segmentation disabled. Now one has to be very careful to keep the hands out of the cropping volume. This way it is possible to scan in additional parts as shown in the next image.

[image: Disabled color segmentation.]
The following image shows the final model where the eyes have been scanned in as well. However this resulted integrating a few more isolated surface patches into the mesh (light blue). There are still small holes in the mesh which in theory could be closed by the application but this would take a long time.

[image: Lion model.]
The parameters in the ‘Registration’ and ‘Integration’ settings have not been covered so far. The registration parameters are described in the application’s help and there is usually no need to make big adjustments. You might want to tweak some of the integration settings:

	Increasing the ‘maximum squared distance’ results in an increased mesh size for newly integrated points.

	Increasing the ‘maximum age’ keeps vertices with a low input confidence longer in the mesh (delays the check for the visibility confidence).

	Decreasing the ‘minimum directions’ (visibility confidence) increases the chance that points are kept in the mesh but this results a bigger noise and more accepted outliers as well.

Future work

	Improvement of the speed of the registration. It currently spends a great amount of time during the correspondence estimation (kd-tree). I tried to use different methods but the faster ones are not as accurate as needed.

	There is currently no loop detection or loop closure implemented. The error accumulation is reduced by integrating new points into a common model but it is still possible that the borders don’t match when the object has been fully turned around.

	The application tries to reconstruct the final mesh directly while scanning. The current meshing algorithm creates a preliminary surface mesh quickly. However filling all small holes takes a long time. Therefore running a hole filling algorithm every few frames would help speeding up the process. An alternative would be to run a manually triggered surface reconstruction algorithm once the general geometry of the object has been recorded.

 Interactive Iterative Closest Point

Interactive Iterative Closest Point

This tutorial will teach you how to write an interactive ICP viewer. The program will
load a point cloud and apply a rigid transformation on it. After that the ICP algorithm will
align the transformed point cloud with the original. Each time the user presses “space”
an ICP iteration is done and the viewer is refreshed.

Contents

	Interactive Iterative Closest Point

	Creating a mesh with Blender

	The code

	The explanations

	Compiling and running the program

Creating a mesh with Blender

You can easily create a sample point cloud with Blender.
Install and open Blender then delete the cube in the scene by pressing “Del” key :

[image: _images/del_cube.png]
Add a monkey mesh in the scene :

[image: _images/add_monkey.png]
Subdivide the original mesh to make it more dense :

[image: _images/add_sub.png]
Configure the subdivision to 2 or 3 for example : don’t forget to apply the modifier

[image: _images/sub2.png]
Export the mesh into a PLY file :

[image: _images/export.png]

The code

First, create a file, let’s say, interactive_icp.cpp in your favorite
editor, and place the following code inside it:

The explanations

Now, let’s break down the code piece by piece.

We include all the headers we will make use of.
#include <pcl/registration/ia_ransac.h> allows us to use pcl::transformPointCloud function.
#include <pcl/console/parse.h>> allows us to use parse the arguments given to the program.

Two typedefs to simplify declarations and code reading.
The bool will help us know when the user asks for the next iteration of ICP

This function takes the reference of a 4x4 matrix and prints the rigid transformation in an human
readable way.

This function is the callback for the viewer. This function will be called whenever a key is pressed
when the viewer window is on top. If “space” is hit; set the bool to true.

The 3 point clouds we will use to store the data.

We check the arguments of the program, set the number of initial ICP iterations
and try to load the PLY file.

We transform the original point cloud using a rigid matrix transformation.
See the related tutorial in PCL documentation for more information.
cloud_in contains the original point cloud.
cloud_tr and cloud_icp contains the translated/rotated point cloud.
cloud_tr is a backup we will use for display (green point cloud).

This is the creation of the ICP object. We set the parameters of the ICP algorithm.
setMaximumIterations(iterations) sets the number of initial iterations to do (1
is the default value). We then transform the point cloud into cloud_icp.
After the first alignment we set ICP max iterations to 1 for all the next times this
ICP object will be used (when the user presses “space”).

Check if the ICP algorithm converged; otherwise exit the program.
In case of success we store the transformation matrix in a 4x4 matrix and
then print the rigid matrix transformation. The reason why we store this
matrix is explained later.

For the visualization we create two viewports in the visualizer vertically
separated. bckgr_gray_level and txt_gray_lvl are variables to easily
switch from white background & black text/point cloud to black background &
white text/point cloud.

We add the original point cloud in the 2 viewports and display it the same color
as txt_gray_lvl. We add the point cloud we transformed using the matrix in the left
viewport in green and the point cloud aligned with ICP in red (right viewport).

We add descriptions for the point clouds in each viewport so the user knows what is what.
The string stream ss is needed to transform the integer iterations into a string.

We set the two viewports background color according to bckgr_gray_level.
To get the camera parameters I simply pressed “C” in the viewer. Then I copied the
parameters into this function to save the camera position / orientation / focal point.
The function registerKeyboardCallback allows us to call a function whenever the
users pressed a keyboard key when viewer windows is on top.

This is the normal behaviour if no key is pressed. The viewer waits to exit.

If the user press any key of the keyboard, the function keyboardEventOccurred is called;
this function checks if the key is “space” or not. If yes the global bool next_iteration
is set to true, allowing the viewer loop to enter the next part of the code: the ICP object
is called to align the meshes. Remember we already configured this object input/output clouds
and we set max iterations to 1 in lines 90-93.

As before we check if ICP as converged, if not we exit the program.
printf(“033[11A”); is a little trick to go up 11 lines in the terminal to write
over the last matrix displayed. In short it allows to replace text instead of writing
new lines; making the output more readable.
We increment iterations to update the text value in the visualizer.

Now we want to display the rigid transformation from the original transformed point cloud to
the current alignment made by ICP. The function getFinalTransformation() returns the rigid
matrix transformation done during the iterations (here: 1 iteration). This means that if you have already
done 10 iterations this function returns the matrix to transform the point cloud from the iteration 10 to 11.

This is not what we want. If we multiply the last matrix with the new one the result is the transformation matrix from
the start to the current iteration. This is basically how it works

matrix[ICP 0->1]*matrix[ICP 1->2]*matrix[ICP 2->3] = matrix[ICP 0->3]

While this is mathematically true, you will easily notice that this is not true in this program due to roundings.
This is why I introduced the initial ICP iteration parameters. Try to launch the program with 20 initial iterations
and save the matrix in a text file. Launch the same program with 1 initial iteration and press space till you go to 20
iterations. You will a notice a slight difference. The matrix with 20 initial iterations is much more accurate than the
one multiplied 19 times.

We set the bool to false and the rest is the ending of the program.

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

After you have made the executable, you can run it. Simply do:

$./interactive_icp monkey.ply 1

Remember that the matrix displayed is not very accurate if you do a lot of iterations
by pressing “space”.

You will see something similar to this:

$./interactive_icp ../monkey.ply 5
[pcl::PLYReader] ../monkey.ply:12: property 'list uint8 uint32 vertex_indices' of element 'face' is not handled

Loaded file ../monkey.ply (125952 points) in 578 ms

Applying this rigid transformation to: cloud_in -> cloud_icp
Rotation matrix :
 | 0.924 -0.383 0.000 |
R = | 0.383 0.924 0.000 |
 | 0.000 0.000 1.000 |
Translation vector :
t = < 0.000, 0.000, 0.400 >

Applied 1 ICP iteration(s) in 2109 ms

ICP has converged, score is 0.0182442

ICP transformation 1 : cloud_icp -> cloud_in
Rotation matrix :
 | 0.998 0.066 -0.003 |
R = | -0.066 0.997 0.033 |
 | 0.005 -0.033 0.999 |
Translation vector :
t = < 0.022, -0.017, -0.097 >

If ICP did a perfect job the two matrices should have exactly the same values and
the matrix found by ICP should have inverted signs outside the diagonal. For example

 | 0.924 -0.383 0.000 |
R = | 0.383 0.924 0.000 |
 | 0.000 0.000 1.000 |
Translation vector :
t = < 0.000, 0.000, 0.400 >

 | 0.924 0.383 0.000 |
R = | -0.383 0.924 0.000 |
 | 0.000 0.000 1.000 |
Translation vector :
t = < 0.000, 0.000, -0.400 >

Danger

If you iterate several times manually using “space”; the results will become more and more erroned because
of the matrix multiplication (see line 181 of the original code)
If you seek precision, provide an initial number of iterations to the program

[image: _images/icp-1.png]
After 25 iterations the models fits perfectly the original cloud. Remember that this is an easy job for ICP because
you are asking to align two identical point clouds !

[image: _images/animation.gif]

 How to use iterative closest point

How to use iterative closest point

This document demonstrates using the Iterative Closest Point algorithm in your
code which can determine if one PointCloud is just a rigid transformation of
another by minimizing the distances between the points of two pointclouds and
rigidly transforming them.

The code

The explanation

Now, let’s breakdown this code piece by piece.

these are the header files that contain the definitions for all of the classes which we will use.

Creates two pcl::PointCloud<pcl::PointXYZ> boost shared pointers and initializes them. The type of each point is set to PointXYZ in the pcl namespace which is:

// \brief A point structure representing Euclidean xyz coordinates.
struct PointXYZ
{
 float x;
 float y;
 float z;
};

The lines:

fill in the PointCloud structure with random point values, and set the appropriate parameters (width, height, is_dense). Also, they output the number of points saved, and their actual data values.

Then:

performs a simple rigid transform on the pointcloud and again outputs the data values.

This creates an instance of an IterativeClosestPoint and gives it some useful information. “icp.setInputSource(cloud_in);” sets cloud_in as the PointCloud to begin from and “icp.setInputTarget(cloud_out);” sets cloud_out as the PointCloud which we want cloud_in to look like.

Next,

Creates a pcl::PointCloud<pcl::PointXYZ> to which the IterativeClosestPoint can save the resultant cloud after applying the algorithm. If the two PointClouds align correctly (meaning they are both the same cloud merely with some kind of rigid transformation applied to one of them) then icp.hasConverged() = 1 (true). It then outputs the fitness score of the final transformation and some information about it.

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

After you have made the executable, you can run it. Simply do:

$./iterative_closest_point

You will see something similar to:

Saved 5 data points to input:
 0.352222 -0.151883 -0.106395
-0.397406 -0.473106 0.292602
-0.731898 0.667105 0.441304
-0.734766 0.854581 -0.0361733
-0.4607 -0.277468 -0.916762
size:5
Transformed 5 data points:
 1.05222 -0.151883 -0.106395
 0.302594 -0.473106 0.292602
-0.0318983 0.667105 0.441304
-0.0347655 0.854581 -0.0361733
 0.2393 -0.277468 -0.916762
[pcl::SampleConsensusModelRegistration::setInputCloud] Estimated a sample
selection distance threshold of: 0.200928
[pcl::IterativeClosestPoint::computeTransformation] Number of
correspondences 4 [80.000000%] out of 5 points [100.0%], RANSAC rejected:
1 [20.000000%].
[pcl::IterativeClosestPoint::computeTransformation] Convergence reached.
Number of iterations: 1 out of 0. Transformation difference: 0.700001
has converged:1 score: 1.95122e-14
 1 4.47035e-08 -3.25963e-09 0.7
2.98023e-08 1 -1.08499e-07 -2.98023e-08
1.30385e-08 -1.67638e-08 1 1.86265e-08
 0 0 0 1

 How to use a KdTree to search

How to use a KdTree to search

In this tutorial we will go over how to use a KdTree for finding the K nearest neighbors of a specific point or location, and then we will also go over how to find all neighbors within some radius specified by the user (in this case random).

Theoretical primer

A k-d tree, or k-dimensional tree, is a data structure used in computer science for organizing some number of points in a space with k dimensions. It is a binary search tree with other constraints imposed on it. K-d trees are very useful for range and nearest neighbor searches. For our purposes we will generally only be dealing with point clouds in three dimensions, so all of our k-d trees will be three-dimensional. Each level of a k-d tree splits all children along a specific dimension, using a hyperplane that is perpendicular to the corresponding axis. At the root of the tree all children will be split based on the first dimension (i.e. if the first dimension coordinate is less than the root it will be in the left-sub tree and if it is greater than the root it will obviously be in the right sub-tree). Each level down in the tree divides on the next dimension, returning to the first dimension once all others have been exhausted. They most efficient way to build a k-d tree is to use a partition method like the one Quick Sort uses to place the median point at the root and everything with a smaller one dimensional value to the left and larger to the right. You then repeat this procedure on both the left and right sub-trees until the last trees that you are to partition are only composed of one element.

From [Wikipedia]:

[image: Example of a 2-d k-d tree]
This is an example of a 2-dimensional k-d tree

[image:]
This is a demonstration of hour the Nearest-Neighbor search works.

The code

Create a file, let’s say, kdtree_search.cpp in your favorite editor and place the following inside:

The explanation

The following code first seeds rand() with the system time and then creates and fills a PointCloud with random data.

This next bit of code creates our kdtree object and sets our randomly created cloud as the input. Then we create a “searchPoint” which is assigned random coordinates.

Now we create an integer (and set it equal to 10) and two vectors for storing our K nearest neighbors from the search.

Assuming that our KdTree returns more than 0 closest neighbors it then prints out the locations of all 10 closest neighbors to our random “searchPoint” which have been stored in our previously created vectors.

Now our code demonstrates finding all neighbors to our given “searchPoint” within some (randomly generated) radius. It again creates 2 vectors for storing information about our neighbors.

Again, like before if our KdTree returns more than 0 neighbors within the specified radius it prints out the coordinates of these points which have been stored in our vectors.

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

After you have made the executable, you can run it. Simply do:

$./kdtree_search

Once you have run it you should see something similar to this:

K nearest neighbor search at (455.807 417.256 406.502) with K=10
 494.728 371.875 351.687 (squared distance: 6578.99)
 506.066 420.079 478.278 (squared distance: 7685.67)
 368.546 427.623 416.388 (squared distance: 7819.75)
 474.832 383.041 323.293 (squared distance: 8456.34)
 470.992 334.084 468.459 (squared distance: 10986.9)
 560.884 417.637 364.518 (squared distance: 12803.8)
 466.703 475.716 306.269 (squared distance: 13582.9)
 456.907 336.035 304.529 (squared distance: 16996.7)
 452.288 387.943 279.481 (squared distance: 17005.9)
 476.642 410.422 268.057 (squared distance: 19647.9)
Neighbors within radius search at (455.807 417.256 406.502) with radius=225.932
 494.728 371.875 351.687 (squared distance: 6578.99)
 506.066 420.079 478.278 (squared distance: 7685.67)
 368.546 427.623 416.388 (squared distance: 7819.75)
 474.832 383.041 323.293 (squared distance: 8456.34)
 470.992 334.084 468.459 (squared distance: 10986.9)
 560.884 417.637 364.518 (squared distance: 12803.8)
 466.703 475.716 306.269 (squared distance: 13582.9)
 456.907 336.035 304.529 (squared distance: 16996.7)
 452.288 387.943 279.481 (squared distance: 17005.9)
 476.642 410.422 268.057 (squared distance: 19647.9)
 499.429 541.532 351.35 (squared distance: 20389)
 574.418 452.961 334.7 (squared distance: 20498.9)
 336.785 391.057 488.71 (squared distance: 21611)
 319.765 406.187 350.955 (squared distance: 21715.6)
 528.89 289.583 378.979 (squared distance: 22399.1)
 504.509 459.609 541.732 (squared distance: 22452.8)
 539.854 349.333 300.395 (squared distance: 22936.3)
 548.51 458.035 292.812 (squared distance: 23182.1)
 546.284 426.67 535.989 (squared distance: 25041.6)
 577.058 390.276 508.597 (squared distance: 25853.1)
 543.16 458.727 276.859 (squared distance: 26157.5)
 613.997 387.397 443.207 (squared distance: 27262.7)
 608.235 467.363 327.264 (squared distance: 32023.6)
 506.842 591.736 391.923 (squared distance: 33260.3)
 529.842 475.715 241.532 (squared distance: 36113.7)
 485.822 322.623 244.347 (squared distance: 36150.5)
 362.036 318.014 269.201 (squared distance: 37493.6)
 493.806 600.083 462.742 (squared distance: 38032.3)
 392.315 368.085 585.37 (squared distance: 38442.9)
 303.826 428.659 533.642 (squared distance: 39392.8)
 616.492 424.551 289.524 (squared distance: 39556.8)
 320.563 333.216 278.242 (squared distance: 41804.5)
 646.599 502.256 424.46 (squared distance: 43948.8)
 556.202 325.013 568.252 (squared distance: 44751)
 291.27 497.352 515.938 (squared distance: 45463.9)
 286.483 322.401 495.377 (squared distance: 45567.2)
 367.288 550.421 550.551 (squared distance: 46318.6)
 595.122 582.77 394.894 (squared distance: 46938.1)
 256.784 499.401 379.931 (squared distance: 47064.1)
 430.782 230.854 293.829 (squared distance: 48067.2)
 261.051 486.593 329.854 (squared distance: 48612.7)
 602.061 327.892 545.269 (squared distance: 48632.4)
 347.074 610.994 395.622 (squared distance: 49475.6)
 482.876 284.894 583.888 (squared distance: 49718.6)
 356.962 247.285 514.959 (squared distance: 50423.7)
 282.065 509.488 516.216 (squared distance: 50730.4)

	Wikipedia

	http://en.wikipedia.org/wiki/K-d_tree

 Min-Cut Based Segmentation

Min-Cut Based Segmentation

In this tutorial we will learn how to use the min-cut based segmentation algorithm implemented in the pcl::MinCutSegmentation class.
This algorithm makes a binary segmentation of the given input cloud. Having objects center and its radius the algorithm divides the cloud on two sets:
foreground and background points (points that belong to the object and those that do not belong).

Theoretical Primer

The idea of this algorithm is as follows:

	For the given point cloud algorithm constructs the graph that contains every single point of the cloud as a set of vertices and two more vertices
called source and sink. Every vertex of the graph that corresponds to the point is connected with source and sink with the edges.
In addition to these, every vertex (except source and sink) has edges that connect the corresponding point with its nearest neighbours.

	Algorithm assigns weights for every edge. There are three different types of weight. Let’s examine them:

	First of all it assigns weight to the edges between clouds points. This weight is called smooth cost and is calculated by the formula:

\(smoothCost=e^{-(\frac{dist}{ \sigma })^2}\)
Here \(dist\) is the distance between points. The farther away the points are, the more is probability that the edge will be cut.

	Next step the algorithm sets data cost. It consists of foreground and background penalties.
The first one is the weight for those edges that connect clouds points with the source vertex and has the constant user-defined value.
The second one is assigned to the edges that connect points with the sink vertex and is calculated by the formula:

\(backgroundPenalty=(\frac{distanceToCenter}{radius})\)
Here \(distanceToCenter\) is the distance to the expected center of the object in the horizontal plane:

\(distanceToCenter=\sqrt{(x-centerX)^2+(y-centerY)^2}\)
Radius that occurs in the formula is the input parameter for this algorithm and can be roughly considered as the range from objects center
outside of which there are no points that belong to foreground (objects horizontal radius).

	After all the preparations the search of the minimum cut is made. Based on an analysis of this cut, cloud is divided on foreground and
background points.

For more comprehensive information please refer to the article
“Min-Cut Based Segmentation of Point Clouds” [http://gfx.cs.princeton.edu/pubs/Golovinskiy_2009_MBS/index.php].

The code

First of all you will need the point cloud for this tutorial.
This [https://raw.github.com/PointCloudLibrary/data/master/tutorials/min_cut_segmentation_tutorial.pcd] is a good one for the purposes of the algorithm.
Next what you need to do is to create a file min_cut_segmentation.cpp in any editor you prefer and copy the following code inside of it:

The explanation

Now let’s study out what is the purpose of this code. First few lines will be omitted, because they are obvious.

These lines are simply loading the cloud from the .pcd file.

This few lines are not necessary. Their only purpose is to show that pcl::MinCutSegmentation class can work with indices.

Here is the line where the instantiation of the pcl::MinCutSegmentation class takes place.
It is the tamplate class that has only one parameter - PointT - which says what type of points will be used.

These lines provide the algorithm with the cloud that must be segmented and the indices.

As mentioned before, algorithm requires point that is known to be the objects center. These lines provide it.

These lines set \(\sigma\) and objects radius required for smooth cost calculation.

This line tells how much neighbours to find when constructing the graph. The more neighbours is set, the more number of edges it will contain.

Here is the line where foreground penalty is set.

These lines are responsible for launching the algorithm. After the segmentation clusters will contain the result.

You can easily access the flow value that was computed during the graph cut. This is exactly what happening here.

These lines simply create the instance of CloudViewer class for result visualization.

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

After you have made the executable, you can run it. Simply do:

$./min_cut_segmentation

After the segmentation the cloud viewer window will be opened and you will see something similar to those images:

[image: _images/min_cut_segmentation.jpg]

 Point Cloud Streaming to Mobile Devices with Real-time Visualization

Point Cloud Streaming to Mobile Devices with Real-time Visualization

This tutorial describes how to send point cloud data over the network from a desktop server to a client running on a mobile
device. The tutorial describes an example app, PointCloudStreaming, for the Android
operating system that receives point clouds over a TCP socket and renders them
using the VES and Kiwi mobile visualization framework. The PointCloudStreaming
app acts as a client, and it connects to the server program pcl_openni_mobile_server.
The server program uses the pcl::OpenNIGrabber to generate point clouds from an
OpenNI compatible camera. The tutorial The OpenNI Grabber Framework in PCL provides a background
for working with the pcl::OpenNIGrabber. This tutorial describes the client and server
programs and how to run them.

 Filtering a PointCloud using ModelOutlierRemoval

Filtering a PointCloud using ModelOutlierRemoval

This tutorial demonstrates how to extract parametric models for example for planes or spheres
out of a PointCloud by using SAC_Models with known coefficients.
If you don’t know the models coefficients take a look at the How to use Random Sample Consensus model tutorial.

The code

First, create a file, let’s call it model_outlier_removal.cpp, in your favorite
editor, and place the following inside it:

The explanation

Now, let’s break down the code piece by piece.

In the following lines, we define the PointClouds structures, fill in noise, random points
on a plane as well as random points on a sphere and display its content to screen.

Finally we extract the sphere using ModelOutlierRemoval.

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

After you have made the executable, you can run it. Simply do:

$./model_outlier_removal

You will see something similar to:

Cloud before filtering:
 0.352222 -0.151883 -0.106395
 -0.397406 -0.473106 0.292602
 -0.731898 0.667105 0.441304
 -0.734766 0.854581 -0.0361733
 -0.4607 -0.277468 -0.916762
 -0.82 -0.341666 0.4592
 -0.728589 0.667873 0.152
 -0.3134 -0.873043 -0.3736
 0.62553 0.590779 0.5096
 -0.54048 0.823588 -0.172
 -0.707627 0.424576 0.5648
 -0.83153 0.523556 0.1856
 -0.513903 -0.719464 0.4672
 0.291534 0.692393 0.66
 0.258758 0.654505 -0.7104
Sphere after filtering:
 -0.82 -0.341666 0.4592
 -0.728589 0.667873 0.152
 -0.3134 -0.873043 -0.3736
 0.62553 0.590779 0.5096
 -0.54048 0.823588 -0.172
 -0.707627 0.424576 0.5648
 -0.83153 0.523556 0.1856
 -0.513903 -0.719464 0.4672
 0.291534 0.692393 0.66
 0.258758 0.654505 -0.7104

 Moment of inertia and eccentricity based descriptors

Moment of inertia and eccentricity based descriptors

In this tutorial we will learn how to use the pcl::MomentOfInertiaEstimation class in order to obtain descriptors based on
eccentricity and moment of inertia. This class also allows to extract axis aligned and oriented bounding boxes of the cloud.
But keep in mind that extracted OBB is not the minimal possible bounding box.

Theoretical Primer

The idea of the feature extraction method is as follows.
First of all the covariance matrix of the point cloud is calculated and its eigen values and vectors are extracted.
You can consider that the resultant eigen vectors are normalized and always form the right-handed coordinate system
(major eigen vector represents X-axis and the minor vector represents Z-axis). On the next step the iteration process takes place.
On each iteration major eigen vector is rotated. Rotation order is always the same and is performed around the other
eigen vectors, this provides the invariance to rotation of the point cloud. Henceforth, we will refer to this rotated major vector as current axis.

[image: _images/eigen_vectors.png]
For every current axis moment of inertia is calculated. Moreover, current axis is also used for eccentricity calculation.
For this reason current vector is treated as normal vector of the plane and the input cloud is projected onto it.
After that eccentricity is calculated for the obtained projection.

[image: _images/projected_cloud.png]
Implemented class also provides methods for getting AABB and OBB. Oriented bounding box is computed as AABB along eigen vectors.

The code

First of all you will need the point cloud for this tutorial.
This [https://github.com/PointCloudLibrary/data/blob/master/tutorials/min_cut_segmentation_tutorial.pcd] is the one presented on the screenshots.
Next what you need to do is to create a file moment_of_inertia.cpp in any editor you prefer and copy the following code inside of it:

The explanation

Now let’s study out what is the purpose of this code. First few lines will be omitted, as they are obvious.

These lines are simply loading the cloud from the .pcd file.

Here is the line where the instantiation of the pcl::MomentOfInertiaEstimation class takes place.
Immediately after that we set the input cloud and start the computational process, that easy.

This is were we declare all necessary variables needed to store descriptors and bounding boxes.

These lines show how to access computed descriptors and other features.

These lines simply create the instance of PCLVisualizer class for result
visualization. Here we also add the cloud and the AABB for visualization. We
set rendering properties so that the cube is displayed using a wireframe,
because the default is to use a solid cube.

Visualization of the OBB is little more complex. So here we create a quaternion from the rotational matrix, set OBBs position
and pass it to the visualizer.

These lines are responsible for eigen vectors visualization. The few lines that
are left simply launch the visualization process.

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

After you have made the executable, you can run it. Simply do:

$./moment_of_inertia lamppost.pcd

You should see something similar to this image. Here AABB is yellow, OBB is red. You can also see the eigen vectors.

[image: _images/moment_of_inertia.png]

 Visualization of the NARF descriptor and descriptor distances

Visualization of the NARF descriptor and descriptor distances

This tutorial is about the visualization of how the NARF descriptor is
calculated and to test how the descriptor distances between certain points in a
range image behave. Compared to the other tuturials, this one is not really
about the code, but about trying the program and looking at the visualization.
Of course, nothing keeps you from having a look at it anyway.

The code

First, create a file called, let’s say, narf_descriptor_visualization.cpp in your favorite
editor, and place the following code inside it:

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

You can now try it with a point cloud file from your hard drive:

$./narf_descriptor_visualization <point_cloud.pcd>

It will take a few second, during which you will see the status in the
terminal. During this time, a NARF feature is extracted in every point of the
range image created from the given point cloud. When it is done, a widget
showing the range image pops up. Now click on a point in the range image. If it
is a valid image point, three additional widgets will pop up. One visualizing
the actual descriptor as a row of gray values, one showing a local range image
patch of the area on which you clicked, overlaid with a star shaped pattern.
Each beam corresponds to one of the cells in the descriptor. The one facing
upwards to the first cell and then going clockwise. The basic intuition is,
that the more the surface changes under the beam, the higher (brighter) the
value of the corresponding descriptor cell. There is also one or more red
beams, which mark the extracted dominant orientations of the image patch,
which, together with the normal, is used to create a unique orientation for the
feature coordinate frame. The last image visualizes the descriptor distances to
every other point in the scene. The darker the value, the more similar the
point is to the clicked image point.

The result should look similar to this:

[image: _images/narf_descriptor_visualization.png]
Also have a look at:

$./narf_descriptor_visualization -h

for a list of parameters.

 How to extract NARF Features from a range image

How to extract NARF Features from a range image

This tutorial demonstrates how to extract NARF descriptors at NARF keypoint
positions from a range image. The executable enables us to load a point cloud
from disc (or create it if not given), extract interest points on it and then
calculate the descriptors at these positions. It then visualizes these
positions, both in an image and a 3D viewer.

The code

First, create a file called, let’s say, narf_feature_extraction.cpp in your favorite
editor, and place the following code inside it:

Explanation

In the beginning we do command line parsing, read a point cloud from disc (or
create it if not provided), create a range image and extract NARF keypoints
from it. All of these steps are already covered in the previous tutorial NARF
keypoint extraction.

The interesting part begins here:

...
std::vector<int> keypoint_indices2;
keypoint_indices2.resize(keypoint_indices.points.size());
for (unsigned int i=0; i<keypoint_indices.size(); ++i) // This step is necessary to get the right vector type
 keypoint_indices2[i]=keypoint_indices.points[i];
...

Here we copy the indices to the vector used as input for the feature.

...
pcl::NarfDescriptor narf_descriptor(&range_image, &keypoint_indices2);
narf_descriptor.getParameters().support_size = support_size;
narf_descriptor.getParameters().rotation_invariant = rotation_invariant;
pcl::PointCloud<pcl::Narf36> narf_descriptors;
narf_descriptor.compute(narf_descriptors);
std::cout << "Extracted "<<narf_descriptors.size()<<" descriptors for "<<keypoint_indices.points.size()<< " keypoints.\n";
...

This code does the actual calculation of the descriptors. It first creates the
NarfDescriptor object and gives it the input data (the keypoint indices and the
range image). Then two important parameters are set. The support size, which
determines the size of the area from which the descriptor is calculated, and if
the rotational invariant (rotation around the normal) version of the NARF
descriptor should be used. The we create the output pointcloud and do the
actual computation. At last, we output the number of keypoints and the number
of extracted descriptors. This numbers can differ. For one, it might happen
that the calculation of the descriptor fails, because there are not enough
points in the range image (resolution too low). Or there might be multiple
descriptors in the same place, but for different dominant rotations.

The resulting PointCloud contains the type Narf36 (see
common/include/pcl/point_types.h) and store the descriptor as a 36 elements
float and x,y,z,roll,pitch,yaw to describe the local coordinate frame at which
the feature was extracted. The descriptors can now be compared, e.g., with the
Manhattan distance (sum of absolute differences).

The remaining code just visualizes the keypoint positions in a range image
widget and also in a 3D viewer.

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

After you have made the executable, you can run it. Simply do:

$./narf_feature_extraction -m

This will use an autogenerated point cloud of a rectangle floating in space.
The key points are detected in the corners. The parameter -m is necessary,
since the area around the rectangle is unseen and therefore the system can not
detect it as a border. The option -m changes the unseen area to maximum range
readings, thereby enabling the system to use these borders.

You can also try it with a point cloud file from your hard drive:

$./narf_feature_extraction <point_cloud.pcd>

The output should look similar to this:

[image: _images/narf_keypoint_extraction.png]

 How to extract NARF keypoint from a range image

How to extract NARF keypoint from a range image

This tutorial demonstrates how to extract NARF key points from a range image.
The executable enables us to load a point cloud from disc (or create it if not
given), extract interest points on it and visualize the result, both in an
image and a 3D viewer.

The code

First, create a file called, let’s say, narf_keypoint_extraction.cpp in your favorite
editor, and place the following code inside it:

Explanation

In the beginning we do command line parsing, read a point cloud from disc (or
create it if not provided), create a range image and visualize it. All of these
steps are already covered in the previous tutorial Range image visualization [http://www.pointclouds.org/documentation/tutorials/range_image_visualization.php#range-image-visualization] .

The interesting part begins here:

...
pcl::RangeImageBorderExtractor range_image_border_extractor;
pcl::NarfKeypoint narf_keypoint_detector (&range_image_border_extractor);
narf_keypoint_detector.setRangeImage (&range_image);
narf_keypoint_detector.getParameters ().support_size = support_size;
//narf_keypoint_detector.getParameters ().add_points_on_straight_edges = true;
//narf_keypoint_detector.getParameters ().distance_for_additional_points = 0.5;

pcl::PointCloud<int> keypoint_indices;
narf_keypoint_detector.compute (keypoint_indices);
std::cout << "Found "<<keypoint_indices.points.size ()<<" key points.\n";
...

This creates a RangeImageBorderExtractor object, that is needed for the
interest point extraction. If you are interested in this you can have a look at
the Range Image Border Extraction tutorial. In this case we just use the
RangeImageBorderExtractor object with its default parameters. Then we create
the NarfKeypoint object, give it the RangeImageBorderExtractor object, the
range image and set the support size (the size of the sphere around a point
that includes points that are used for the determination of the interest
value). The commented out part contains some parameters that you can test out
if you want. Next we create the object where the indices of the determined
keypoints will be saved and compute them. In the last step we output the number
of found keypoints.

The remaining code just visualizes the results in a range image widget and also in a 3D viewer.

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

After you have made the executable, you can run it. Simply do:

$./narf_keypoint_extraction -m

This will use an autogenerated point cloud of a rectangle floating in space.
The key points are detected in the corners. The parameter -m is necessary,
since the area around the rectangle is unseen and therefore the system can not
detect it as a border. The option -m changes the unseen area to maximum range
readings, thereby enabling the system to use these borders.

You can also try it with a point cloud file from your hard drive:

$./narf_keypoint_extraction <point_cloud.pcd>

The output should look similar to this:

[image: _images/narf_keypoint_extraction.png]

 How to use Normal Distributions Transform

How to use Normal Distributions Transform

In this tutorial we will describe how to use the Normal Distributions Transform (NDT) algorithm to determine a rigid transformation between two large point clouds, both over 100,000 points. The NDT algorithm is a registration algorithm that uses standard optimization techniques applied to statistical models of 3D points to determine the most probable registration between two point clouds. For more information on the inner workings of the NDT algorithm, see Dr. Martin Magnusson’s doctoral thesis, “The Three-Dimensional Normal Distributions Transform – an Efficient Representation for Registration, Surface Analysis, and Loop Detection.”

The code

First, download the datasets room_scan1.pcd [https://raw.github.com/PointCloudLibrary/data/master/tutorials/room_scan1.pcd] and room_scan2.pcd [https://raw.github.com/PointCloudLibrary/data/master/tutorials/room_scan2.pcd] and save them to your disk. These point clouds contain 360 degree scans of the same room from different perspectives.

Then, create a file in your favorite editor and place the following inside. I used normal_distributions_transform.cpp for this tutorial.

The explanation

Now, let’s breakdown this code piece by piece.

These are the required header files to use Normal Distributions Transform algorithm and a filter used to down sample the data. The filter can be exchanged for other filters but I have found the approximate voxel filter to produce the best results.

The above code loads the two pcd file into pcl::PointCloud<pcl::PointXYZ> boost shared pointers. The input cloud will be transformed into the reference frame of the target cloud.

This section filters the input cloud to improve registration time. Any filter that downsamples the data uniformly can work for this section. The target cloud does not need be filtered because voxel grid data structure used by the NDT algorithm does not use individual points, but instead uses the statistical data of the points contained in each of its data structures voxel cells.

Here we create the NDT algorithm with the default values. The internal data structures are not initialized until later.

Next we need to modify some of the scale dependent parameters. Because the NDT algorithm uses a voxelized data structure and More-Thuente line search, some parameters need to be scaled to fit the data set. The above parameters seem to work well on the scale we are working with, size of a room, but they would need to be significantly decreased to handle smaller objects, such as scans of a coffee mug.

The Transformation Epsilon parameter defines minimum, allowable, incremental change of the transformation vector, [x, y, z, roll, pitch, yaw] in meters and radians respectively. Once the incremental change dips below this threshold, the alignment terminates. The Step Size parameter defines the maximum step length allowed by the More-Thuente line search. This line search algorithm determines the best step length below this maximum value, shrinking the step length as you near the optimal solution. Larger maximum step lengths will be able to clear greater distances in fewer iterations but run the risk of overshooting and ending up in an undesirable local minimum. Finally, the Resolution parameter defines the voxel resolution of the internal NDT grid structure. This structure is easily searchable and each voxel contain the statistical data, mean, covariance, etc., associated with the points it contains. The statistical data is used to model the cloud as a set of multivariate Gaussian distributions and allows us to calculate and optimize the probability of the existence of points at any position within the voxel. This parameter is the most scale dependent. It needs to be large enough for each voxel to contain at least 6 points but small enough to uniquely describe the environment.

This parameter controls the maximum number of iterations the optimizer can run. For the most part, the optimizer will terminate on the Transformation Epsilon before hitting this limit but this helps prevent it from running for too long in the wrong direction.

Here, we pass the point clouds to the NDT registration program. The input cloud is the cloud that will be transformed and the target cloud is the reference frame to which the input cloud will be aligned. When the target cloud is added, the NDT algorithm’s internal data structure is initialized using the target cloud data.

In this section of code, we create an initial guess about the transformation needed to align the point clouds. Though the algorithm can be run without such an initial transformation, you tend to get better results with one, particularly if there is a large discrepancy between reference frames. In robotic applications, such as the ones used to generate this data set, the initial transformation is usually generated using odometry data.

Finally, we are ready to align the point clouds. The resulting transformed input cloud is stored in the output cloud. We then display the results of the alignment as well as the Euclidean fitness score, calculated as the sum of squared distances from the output cloud to the closest point in the target cloud.

Immediately after the alignment process, the output cloud will contain a transformed version of the filtered input cloud because we passed the algorithm a filtered point cloud, as opposed to the original input cloud. To obtain the aligned version of the original cloud, we extract the final transformation from the NDT algorithm and transform our original input cloud. We can now save this cloud to file room_scan2_transformed.pcd for future use.

This next part is unnecessary but I like to visually see the results of my labors. With PCL’s visualizer classes, this can be easily accomplished. We first generate a visualizer with a black background. Then we colorize our target and output cloud, red and green respectively, and load them into the visualizer. Finally we start the visualizer and wait for the window to be closed.

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

After you have made the executable, you can run it. Simply do:

$./normal_distributions_transform

You should see results similar those below as well as a visualization of the aligned point clouds. Happy Coding:

Loaded 112586 data points from room_scan1.pcd
Loaded 112624 data points from room_scan2.pcd
Filtered cloud contains 12433 data points from room_scan2.pcd
Normal Distributions Transform has converged:1 score: 0.638694

 Estimating Surface Normals in a PointCloud

Estimating Surface Normals in a PointCloud

Surface normals are important properties of a geometric surface, and are
heavily used in many areas such as computer graphics applications, to apply the
correct light sources that generate shadings and other visual effects.

Given a geometric surface, it’s usually trivial to infer the direction of the
normal at a certain point on the surface as the vector perpendicular to the
surface in that point. However, since the point cloud datasets that we acquire
represent a set of point samples on the real surface, there are two
possibilities:

	obtain the underlying surface from the acquired point cloud dataset, using
surface meshing techniques, and then compute the surface normals from the
mesh;

	use approximations to infer the surface normals from the point cloud dataset
directly.

This tutorial will address the latter, that is, given a point cloud dataset,
directly compute the surface normals at each point in the cloud.

 Normal Estimation Using Integral Images

Normal Estimation Using Integral Images

In this tutorial we will learn how to compute normals for an organized point
cloud using integral images.

The code

First, create a file, let’s say, normal_estimation_using_integral_images.cpp in your favorite
editor, and place the following inside it:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	 #include <pcl/io/io.h>
 #include <pcl/io/pcd_io.h>
 #include <pcl/features/integral_image_normal.h>
 #include <pcl/visualization/cloud_viewer.h>

 int
 main ()
 {
 // load point cloud
 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
 pcl::io::loadPCDFile ("table_scene_mug_stereo_textured.pcd", *cloud);

 // estimate normals
 pcl::PointCloud<pcl::Normal>::Ptr normals (new pcl::PointCloud<pcl::Normal>);

 pcl::IntegralImageNormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
 ne.setNormalEstimationMethod (ne.AVERAGE_3D_GRADIENT);
 ne.setMaxDepthChangeFactor(0.02f);
 ne.setNormalSmoothingSize(10.0f);
 ne.setInputCloud(cloud);
 ne.compute(*normals);

 // visualize normals
 pcl::visualization::PCLVisualizer viewer("PCL Viewer");
 viewer.setBackgroundColor (0.0, 0.0, 0.5);
 viewer.addPointCloudNormals<pcl::PointXYZ,pcl::Normal>(cloud, normals);

 while (!viewer.wasStopped ())
 {
 viewer.spinOnce ();
 }
 return 0;
 }

The explanation

Now, let’s break down the code piece by piece. In the first part we load a
point cloud from a file:

pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile ("table_scene_mug_stereo_textured.pcd", *cloud);

In the second part we create an object for the normal estimation and compute
the normals:

// estimate normals
pcl::PointCloud<pcl::Normal>::Ptr normals (new pcl::PointCloud<pcl::Normal>);

pcl::IntegralImageNormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
ne.setNormalEstimationMethod (ne.AVERAGE_3D_GRADIENT);
ne.setMaxDepthChangeFactor(0.02f);
ne.setNormalSmoothingSize(10.0f);
ne.setInputCloud(cloud);
ne.compute(*normals);

The following normal estimation methods are available:

enum NormalEstimationMethod
{
 COVARIANCE_MATRIX,
 AVERAGE_3D_GRADIENT,
 AVERAGE_DEPTH_CHANGE
};

The COVARIANCE_MATRIX mode creates 9 integral images to compute the normal for
a specific point from the covariance matrix of its local neighborhood. The
AVERAGE_3D_GRADIENT mode creates 6 integral images to compute smoothed versions
of horizontal and vertical 3D gradients and computes the normals using the
cross-product between these two gradients. The AVERAGE_DEPTH_CHANGE mode
creates only a single integral image and computes the normals from the average
depth changes.

In the last part we visualize the point cloud and the corresponding normals:

// visualize normals
pcl::visualization::PCLVisualizer viewer("PCL Viewer");
viewer.setBackgroundColor (0.0, 0.0, 0.5);
viewer.addPointCloudNormals<pcl::PointXYZ,pcl::Normal>(cloud, normals);

while (!viewer.wasStopped ())
{
 viewer.spinOnce ();
}

 Spatial Partitioning and Search Operations with Octrees

Spatial Partitioning and Search Operations with Octrees

An octree is a tree-based data structure for managing sparse 3-D data. Each internal node has exactly eight children.
In this tutorial we will learn how to use the octree for spatial partitioning and neighbor search within pointcloud data. Particularly, we explain how to perform a “Neighbors within Voxel Search”, the
“K Nearest Neighbor Search” and “Neighbors within Radius Search”.

The code:

First, create a file, let’s say, octree_search.cpp and place the following inside it:

The explanation

Now, let’s explain the code in detail.

We fist define and instantiate a shared PointCloud structure and fill it with random points.

Then we create an octree instance which is initialized with its resolution. This octree keeps a vector of point indices within its leaf nodes.
The resolution parameter describes the length of the smallest voxels at lowest octree level. The depth of the octree is therefore a function of the resolution as well as
the spatial dimension of the pointcloud. If a bounding box of the pointcloud is know, it should be assigned to the octree by using the defineBoundingBox method.
Then we assign a pointer to the PointCloud and add all points to the octree.

Once the PointCloud is associated with an octree, we can perform search operations. The fist search method used here is “Neighbors within Voxel Search”. It assigns the search point to the corresponding
leaf node voxel and returns a vector of point indices. These indices relate to points which fall within the same voxel. The distance between
the search point and the search result depend therefore on the resolution parameter of the octree.

Next, a K nearest neighbor search is demonstrated. In this example, K is set to 10. The “K Nearest Neighbor Search” method writes the search results into two separate vectors.
The first one, pointIdxNKNSearch, will contain the search result (indices referring to the associated PointCloud data set). The second vector holds corresponding squared distances
between the search point and the nearest neighbors.

The “Neighbors within Radius Search” works very similar to the “K Nearest Neighbor Search”. Its search results are written to two separate vectors describing
point indices and squares search point distances.

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

After you have made the executable, you can run it. Simply do:

$./octreesearch

You will see something similar to:

Neighbors within voxel search at (974.82 188.793 138.779)
 903.656 82.8158 162.392
 1007.34 191.035 61.7727
 896.88 155.711 58.1942
K nearest neighbor search at (974.82 188.793 138.779) with K=10
 903.656 82.8158 162.392 (squared distance: 16853.1)
 903.18 247.058 54.3528 (squared distance: 15655)
 861.595 149.96 135.199 (squared distance: 14340.7)
 896.88 155.711 58.1942 (squared distance: 13663)
 995.889 116.224 219.077 (squared distance: 12157.9)
 885.852 238.41 160.966 (squared distance: 10869.5)
 900.807 220.317 77.1432 (squared distance: 10270.7)
 1002.46 117.236 184.594 (squared distance: 7983.59)
 1007.34 191.035 61.7727 (squared distance: 6992.54)
 930.13 223.335 174.763 (squared distance: 4485.15)
Neighbors within radius search at (974.82 188.793 138.779) with radius=109.783
 1007.34 191.035 61.7727 (squared distance: 6992.54)
 900.807 220.317 77.1432 (squared distance: 10270.7)
 885.852 238.41 160.966 (squared distance: 10869.5)
 1002.46 117.236 184.594 (squared distance: 7983.59)
 930.13 223.335 174.763 (squared distance: 4485.15)

Additional Details

Several octree types are provided by the PCL octree component. They basically differ by their individual leaf node characteristics.

	OctreePointCloudPointVector (equal to OctreePointCloud): This octree can hold a list of point indices at each leaf node.

	OctreePointCloudSinglePoint: This octree class hold only a single point indices at each leaf node. Only the most recent point index that is assigned to the leaf node is stored.

	OctreePointCloudOccupancy: This octree does not store any point information at its leaf nodes. It can be used for spatial occupancy checks.

	OctreePointCloudDensity: This octree counts the amount of points within each leaf node voxel. It allows for spatial density queries.

If octrees needs to be created at high rate, please have a look at the octree double buffering implementation (Octree2BufBase class). This class
keeps two parallel octree structures in the memory at the same time. In addition to search operations, this also enables spatial change detection. Furthermore, an advanced memory management reduces memory allocation
and deallocation operations during the octree building process. The double buffering octree implementation can be assigned to all OctreePointCloud classes via the template argument “OctreeT”.

All octrees support serialization and deserialization of the octree structure and the octree data content.

Conclusion

The PCL octree implementation is a powerful tools for spatial partitioning and search operation.

 Spatial change detection on unorganized point cloud data

Spatial change detection on unorganized point cloud data

An octree is a tree-based data structure for organizing sparse 3-D data. In this tutorial we will learn how to use the octree implementation for detecting
spatial changes between multiple unorganized point clouds which could vary in size, resolution, density and point ordering. By recursively comparing
the tree structures of octrees, spatial changes represented by differences in voxel configuration can be identified.
Additionally, we explain how to use the pcl octree “double buffering” technique allows us to efficiently process multiple point clouds over time.

The code:

First, create a file, let’s say, octree_change_detection.cpp and place the following inside it:

The explanation

Now, let’s discuss the code in detail.

We fist instantiate the OctreePointCloudChangeDetector class and define its voxel resolution.

Then we create a point cloud instance cloudA which is initialized with random point data. The generated point data is used to build an octree structure.

Point cloud cloudA is our reference point cloud and the octree structure describe its spatial distribution. The class OctreePointCloudChangeDetector inherits from
class Octree2BufBase which enables to keep and manage two octrees in the memory at the same time. In addition, it implements a memory pool that reuses
already allocated node objects and therefore reduces expensive memory allocation and deallocation operations when generating octrees of multiple point clouds. By calling “octree.switchBuffers()”, we reset the
octree class while keeping the previous octree structure in memory.

Now we instantiate a second point cloud “cloudB” and fill it with random point data. This point cloud is used to build a new octree structure.

In order to retrieve points that are stored at voxels of the current octree structure (based on cloudB) which did not exist in the previous octree structure
(based on cloudA), we can call the method “getPointIndicesFromNewVoxels” which return a vector of the result point indices.

Finally, we output the results to the std::cout stream.

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

After you have made the executable, you can run it. Simply do:

$./octree_change_detection

You will see something similar to:

Output from getPointIndicesFromNewVoxels:
0# Index:11 Point:5.56047 56.5082 10.2807
1# Index:34 Point:1.27106 63.8973 14.5316
2# Index:102 Point:6.42197 60.7727 14.7087
3# Index:105 Point:5.64673 57.736 25.7479
4# Index:66 Point:22.8585 56.4647 63.9779
5# Index:53 Point:52.0745 14.9643 63.5844

Another example application: OpenNI change viewer

The pcl visualization component contains an openNI change detector example. It displays grabbed point clouds from the OpenNI interface and displays
detected spatial changes in red.

Simply execute:

$ cd visualization/tools
$./openni_change_viewer

And you should see something like this:

[image: octreeChangeViewer]

Conclusion

This octree-based change detection enables to analyse “unorganized” point clouds for spatial changes.

Additional Details

“Unorganized” point clouds are characterized by non-existing point references between points from different point clouds due to varying size, resolution, density and/or point ordering.
In case of “organized” point clouds often based on a single 2D depth/disparity images with fixed width and height, a differential analysis of the corresponding 2D depth data might be faster.

 The OpenNI Grabber Framework in PCL

The OpenNI Grabber Framework in PCL

As of PCL 1.0, we offer a new generic grabber interface to provide a smooth and
convenient access to different devices and their drivers, file formats and
other sources of data.

The first driver that we incorporated is the new OpenNI Grabber, which makes it
a breeze to request data streams from OpenNI compatible cameras. This tutorial
presents how to set up and use the grabber, and since it’s so simple, we can
keep it short :).

The cameras that we have tested so far are the Primesense Reference Design [http://www.primesense.com/], Microsoft Kinect [http://www.xbox.com/kinect/] and Asus Xtion Pro [http://event.asus.com/wavi/product/WAVI_Pro.aspx] cameras:

[image: _images/openni_cams.jpg]

Simple Example

In visualization, there is a very short piece of code which contains all that
is required to set up a pcl::PointCloud<XYZ> or pcl::PointCloud<XYZRGB>
cloud callback.

Here is a screenshot and a video of the PCL OpenNI Viewer in action, which uses
the OpenNI Grabber.

[image: _images/pcl_openni_viewer.jpg]

 How to incrementally register pairs of clouds

How to incrementally register pairs of clouds

This document demonstrates using the Iterative Closest Point algorithm in order
to incrementally register a series of point clouds two by two.

The idea is to transform all the clouds in the first cloud’s frame.

This is done by finding the best transform between each consecutive cloud, and accumulating these transforms over the whole set of clouds.

Your data set should consist of clouds that have been roughly pre-aligned in a common frame (e.g. in a robot’s odometry or map frame) and overlap with one another.

We provide a set of clouds at github.com/PointCloudLibrary/data/tree/master/tutorials/pairwise/ [https://github.com/PointCloudLibrary/data/tree/master/tutorials/pairwise].

The code

The explanation

Let’s breakdown this code piece by piece.

We will first make a quick run through the declarations. Then, we will study the registering functions.

Declarations

These are the header files that contain the definitions for all of the classes which we will use.

Creates global variables for visualization purpose

Declare a convenient structure that allow us to handle clouds as couple [points - filename]

Define a new point representation (see Adding your own custom PointT type for more on the subject)

Registering functions

Let’s see how are our functions organized.

The main function checks the user input, loads the data in a vector and starts the pair-registration process..

After a transform is found for a pair, the pair is transformed into the first cloud’s frame, and the global transformation is updated.

Loading data is pretty straightforward. We iterate other the program’s arguments.

For each argument, we check if it links to a pcd file. If so, we create a PCD object that is added to the vector of clouds.

We now arrive to the actual pair registration.

First, we optionally down sample our clouds. This is useful in the case of large datasets. Curvature are then computed (for visualization purpose).

We then create the ICP object, set its parameters and link it to the two clouds we wish to align. Remember to adapt these to your own datasets.

// Align
pcl::IterativeClosestPointNonLinear<PointNormalT, PointNormalT> reg;
reg.setTransformationEpsilon (1e-6);
// Set the maximum distance between two correspondences (src<->tgt) to 10cm
// Note: adjust this based on the size of your datasets
reg.setMaxCorrespondenceDistance (0.1);
// Set the point representation
reg.setPointRepresentation (boost::make_shared<const MyPointRepresentation> (point_representation));

reg.setInputCloud (points_with_normals_src);
reg.setInputTarget (points_with_normals_tgt);

As this is a tutorial, we wish to display the intermediate of the registration process.

To this end, the ICP is limited to 2 registration iterations:

reg.setMaximumIterations (2);

And is manually iterated (30 times in our case):

for (int i = 0; i < 30; ++i)
{
 [...]
 points_with_normals_src = reg_result;
 // Estimate
 reg.setInputCloud (points_with_normals_src);
 reg.align (*reg_result);
 [...]
}

During each iteration, we keep track of and accumulate the transformations returned by the ICP:

Eigen::Matrix4f Ti = Eigen::Matrix4f::Identity (), prev, targetToSource;
[...]
for (int i = 0; i < 30; ++i)
{
 [...]
 Ti = reg.getFinalTransformation () * Ti;
 [...]
}

If the difference between the transform found at iteration N and the one found at iteration N-1 is smaller than the transform threshold passed to ICP,

we refine the matching process by choosing closer correspondences between the source and the target:

for (int i = 0; i < 30; ++i)
{
 [...]
 if (std::abs ((reg.getLastIncrementalTransformation () - prev).sum ()) < reg.getTransformationEpsilon ())
 reg.setMaxCorrespondenceDistance (reg.getMaxCorrespondenceDistance () - 0.001);

 prev = reg.getLastIncrementalTransformation ();
 [...]
}

Once the best transformation has been found, we invert it (to get the transformation from target to source) and apply it to the target cloud.

The transformed target is then added to the source and returned to the main function with the transformation.

//
// Get the transformation from target to source
targetToSource = Ti.inverse();

//
// Transform target back in source frame
pcl::transformPointCloud (*cloud_tgt, *output, targetToSource);
[...]
*output += *cloud_tgt;
final_transform = targetToSource;

Compiling and running the program

Create a file named pairwise_incremental_registration.cpp and paste the full code in it.

Create CMakeLists.txt file and add the following line in it:

Copy the files from github.com/PointCloudLibrary/data/tree/master/tutorials/pairwise [https://raw.github.com/PointCloudLibrary/data/master/tutorials/pairwise/] in your working folder.

After you have made the executable (cmake ., make), you can run it. Simply do:

$./pairwise_incremental_registration capture000[1-5].pcd

You will see something similar to:

[image: _images/1.png]
[image: _images/2.png]
[image: _images/3.png]
Visualize the final results by running:

$ pcl_viewer 1.pcd 2.pcd 3.pcd 4.pcd

[image: _images/4.png]
[image: _images/5.png]
NOTE: if you only see a black screen in your viewer, try adjusting the camera position with your mouse. This may happen with the sample PCD files of this tutorial.

 Filtering a PointCloud using a PassThrough filter

Filtering a PointCloud using a PassThrough filter

In this tutorial we will learn how to perform a simple filtering along a
specified dimension – that is, cut off values that are either inside or
outside a given user range.

The code

First, create a file, let’s say, passthrough.cpp in your favorite
editor, and place the following inside it:

The explanation

Now, let’s break down the code piece by piece.

In the following lines, we define the Point Clouds structures, fill in the
input cloud, and display its content to screen.

Then, we create the PassThrough filter object, and set its parameters. The
filter field name is set to the z coordinate, and the accepted interval values
are set to (0.0;1.0).

Finally we show the content of the filtered cloud.

Compiling and running the program

Add the following lines to your CMakeLists.txt file:

After you have made the executable, you can run it. Simply do:

$./passthrough

You will see something similar to:

Cloud before filtering:
 0.352222 -0.151883 -0.106395
 -0.397406 -0.473106 0.292602
 -0.731898 0.667105 0.441304
 -0.734766 0.854581 -0.0361733
 -0.4607 -0.277468 -0.916762
Cloud after filtering:
 -0.397406 -0.473106 0.292602
 -0.731898 0.667105 0.441304

A graphical display of the filtering process is shown below.

[image: _images/passthrough_2.png]
Note that the coordinate axis are represented as red (x), green (y), and blue
(z). The five points are represented with green as the points remaining after
filtering and red as the points that have been removed by the filter.

As an exercise, try uncommenting this line

and run the program again.

 The PCD (Point Cloud Data) file format

The PCD (Point Cloud Data) file format

This document describes the PCD (Point Cloud Data) file format, and the way it
is used inside Point Cloud Library (PCL).

[image: PCD file format icon]

Why a new file format?

The PCD file format is not meant to reinvent the wheel, but rather to
complement existing file formats that for one reason or another did not/do not
support some of the extensions that PCL brings to n-D point cloud processing.

PCD is not the first file type to support 3D point cloud data. The computer
graphics and computational geometry communities in particular, have created
numerous formats to describe arbitrary polygons and point clouds acquired using
laser scanners. Some of these formats include:

	PLY [http://en.wikipedia.org/wiki/PLY_(file_format)] - a polygon file format, developed at Stanford University by Turk et al

	STL [http://en.wikipedia.org/wiki/STL_(file_format)] - a file format native to the stereolithography CAD software created by 3D Systems

	OBJ [http://en.wikipedia.org/wiki/Wavefront_.obj_file] - a geometry definition file format first developed by Wavefront Technologies

	X3D [http://en.wikipedia.org/wiki/X3D] - the ISO standard XML-based file format for representing 3D computer graphics data

	and many others [http://en.wikipedia.org/wiki/Category:Graphics_file_formats]

All the above file formats suffer from several shortcomings, as explained in
the next sections – which is natural, as they were created for a different
purpose and at different times, before today’s sensing technologies and
algorithms had been invented.

PCD versions

PCD file formats might have different revision numbers, prior to the release of
Point Cloud Library (PCL) version 1.0. These are numbered with PCD_Vx (e.g.,
PCD_V5, PCD_V6, PCD_V7, etc) and represent version numbers 0.x for the PCD
file.

The official entry point for the PCD file format in PCL however should be
version 0.7 (PCD_V7).

File format header

Each PCD file contains a header that identifies and declares certain properties
of the point cloud data stored in the file. The header of a PCD must be encoded
in ASCII.

Note

Each header entry as well as ascii point data (see below) specified in a PCD
file, is separated using new lines (\n).

As of version 0.7, the PCD header contains the following entries:

	VERSION - specifies the PCD file version

	FIELDS - specifies the name of each dimension/field that a point can
have. Examples:

FIELDS x y z # XYZ data
FIELDS x y z rgb # XYZ + colors
FIELDS x y z normal_x normal_y normal_z # XYZ + surface normals
FIELDS j1 j2 j3 # moment invariants
...

	SIZE - specifies the size of each dimension in bytes. Examples:

	unsigned char/char has 1 byte

	unsigned short/short has 2 bytes

	unsigned int/int/float has 4 bytes

	double has 8 bytes

	TYPE - specifies the type of each dimension as a char. The current accepted types are:

	I - represents signed types int8 (char), int16 (short), and int32 (int)

	U - represents unsigned types uint8 (unsigned char), uint16 (unsigned short), uint32 (unsigned int)

	F - represents float types

	COUNT - specifies how many elements does each dimension have. For
example, x data usually has 1 element, but a feature descriptor like the
VFH has 308. Basically this is a way to introduce n-D histogram descriptors
at each point, and treating them as a single contiguous block of memory. By
default, if COUNT is not present, all dimensions’ count is set to 1.

	WIDTH - specifies the width of the point cloud dataset in the number of
points. WIDTH has two meanings:

	it can specify the total number of points in the cloud (equal with POINTS see below) for unorganized datasets;

	it can specify the width (total number of points in a row) of an organized point cloud dataset.

Also see HEIGHT.

Note

An organized point cloud dataset is the name given to point clouds that
resemble an organized image (or matrix) like structure, where the data is
split into rows and columns. Examples of such point clouds include data
coming from stereo cameras or Time Of Flight cameras. The advantages of a
organized dataset is that by knowing the relationship between adjacent
points (e.g. pixels), nearest neighbor operations are much more efficient,
thus speeding up the computation and lowering the costs of certain
algorithms in PCL.

Examples:

WIDTH 640 # there are 640 points per line

	HEIGHT - specifies the height of the point cloud dataset in the number of points. HEIGHT has two meanings:

	it can specify the height (total number of rows) of an organized point cloud dataset;

	it is set to 1 for unorganized datasets (thus used to check whether a dataset is organized or not).

Example:

WIDTH 640 # Image-like organized structure, with 480 rows and 640 columns,
HEIGHT 480 # thus 640*480=307200 points total in the dataset

Example:

WIDTH 307200
HEIGHT 1 # unorganized point cloud dataset with 307200 points

	VIEWPOINT - specifies an acquisition viewpoint for the points in the
dataset. This could potentially be later on used for building transforms
between different coordinate systems, or for aiding with features such as
surface normals, that need a consistent orientation.

The viewpoint information is specified as a translation (tx ty tz) +
quaternion (qw qx qy qz). The default value is:

VIEWPOINT 0 0 0 1 0 0 0

	POINTS - specifies the total number of points in the cloud. As of version
0.7, its purpose is a bit redundant, so we’re expecting this to be removed in
future versions.

Example:

POINTS 307200 # the total number of points in the cloud

	DATA - specifies the data type that the point cloud data is stored in. As
of version 0.7, two data types are supported: ascii and binary. See the
next section for more details.

Note

The next bytes directly after the header’s last line (DATA) are
considered part of the point cloud data, and will be interpreted as such.

Warning

The header entries must be specified precisely in the above order, that is:

VERSION
FIELDS
SIZE
TYPE
COUNT
WIDTH
HEIGHT
VIEWPOINT
POINTS
DATA

Data storage types

As of version 0.7, the .PCD file format uses two different modes for storing data:

	in ASCII form, with each point on a new line:

p_1
p_2
p_3
p_4
...

p_n

Note

Starting with PCL version 1.0.1 the string representation for NaN is “nan”.

	in binary form, where the data is a complete memory copy of the
pcl::PointCloud.points array/vector. On Linux systems, we use mmap/munmap
operations for the fastest possible read/write access to the data.

Storing point cloud data in both a simple ascii form with each point on a line,
space or tab separated, without any other characters on it, as well as in a
binary dump format, allows us to have the best of both worlds: simplicity and
speed, depending on the underlying application. The ascii format allows users
to open up point cloud files and plot them using standard software tools like
gnuplot or manipulate them using tools like sed, awk, etc.

Advantages over other file formats

Having PCD as (yet another) file format can be seen as PCL suffering from the not invented here syndrome. In reality, this is not the case, as none of the above mentioned file formats offers the flexibility and speed of PCD files. Some of the clearly stated advantages include:

	the ability to store and process organized point cloud datasets – this is of
extreme importance for real time applications, and research areas such as
augmented reality, robotics, etc;

	binary mmap/munmap data types are the fastest possible way of loading and
saving data to disk.

	storing different data types (all primitives supported: char, short, int,
float, double) allows the point cloud data to be flexible and efficient with
respect to storage and processing. Invalid point dimensions are usually
stored as NAN types.

	n-D histograms for feature descriptors – very important for 3D
perception/computer vision applications

An additional advantage is that by controlling the file format, we can best
adapt it to PCL, and thus obtain the highest performance with respect to PCL
applications, rather than adapting a different file format to PCL as the native
type and inducing additional delays through conversion functions.

Note

Though PCD (Point Cloud Data) is the native file format in PCL, the
pcl_io library should offer the possibility to save and load data in all
the other aforementioned file formats too.

Example

A snippet of a PCD file is attached below. It is left to the reader to
interpret the data and see what it means. :) Have fun!:

.PCD v.7 - Point Cloud Data file format
VERSION .7
FIELDS x y z rgb
SIZE 4 4 4 4
TYPE F F F F
COUNT 1 1 1 1
WIDTH 213
HEIGHT 1
VIEWPOINT 0 0 0 1 0 0 0
POINTS 213
DATA ascii
0.93773 0.33763 0 4.2108e+06
0.90805 0.35641 0 4.2108e+06
0.81915 0.32 0 4.2108e+06
0.97192 0.278 0 4.2108e+06
0.944 0.29474 0 4.2108e+06
0.98111 0.24247 0 4.2108e+06
0.93655 0.26143 0 4.2108e+06
0.91631 0.27442 0 4.2108e+06
0.81921 0.29315 0 4.2108e+06
0.90701 0.24109 0 4.2108e+06
0.83239 0.23398 0 4.2108e+06
0.99185 0.2116 0 4.2108e+06
0.89264 0.21174 0 4.2108e+06
0.85082 0.21212 0 4.2108e+06
0.81044 0.32222 0 4.2108e+06
0.74459 0.32192 0 4.2108e+06
0.69927 0.32278 0 4.2108e+06
0.8102 0.29315 0 4.2108e+06
0.75504 0.29765 0 4.2108e+06
0.8102 0.24399 0 4.2108e+06
0.74995 0.24723 0 4.2108e+06
0.68049 0.29768 0 4.2108e+06
0.66509 0.29002 0 4.2108e+06
0.69441 0.2526 0 4.2108e+06
0.62807 0.22187 0 4.2108e+06
0.58706 0.32199 0 4.2108e+06
0.52125 0.31955 0 4.2108e+06
0.49351 0.32282 0 4.2108e+06
0.44313 0.32169 0 4.2108e+06
0.58678 0.2929 0 4.2108e+06
0.53436 0.29164 0 4.2108e+06
0.59308 0.24134 0 4.2108e+06
0.5357 0.2444 0 4.2108e+06
0.50043 0.31235 0 4.2108e+06
0.44107 0.29711 0 4.2108e+06
0.50727 0.22193 0 4.2108e+06
0.43957 0.23976 0 4.2108e+06
0.8105 0.21112 0 4.2108e+06
0.73555 0.2114 0 4.2108e+06
0.69907 0.21082 0 4.2108e+06
0.63327 0.21154 0 4.2108e+06
0.59165 0.21201 0 4.2108e+06
0.52477 0.21491 0 4.2108e+06
0.49375 0.21006 0 4.2108e+06
0.4384 0.19632 0 4.2108e+06
0.43425 0.16052 0 4.2108e+06
0.3787 0.32173 0 4.2108e+06
0.33444 0.3216 0 4.2108e+06
0.23815 0.32199 0 4.808e+06
0.3788 0.29315 0 4.2108e+06
0.33058 0.31073 0 4.2108e+06
0.3788 0.24399 0 4.2108e+06
0.30249 0.29189 0 4.2108e+06
0.23492 0.29446 0 4.808e+06
0.29465 0.24399 0 4.2108e+06
0.23514 0.24172 0 4.808e+06
0.18836 0.32277 0 4.808e+06
0.15992 0.32176 0 4.808e+06
0.08642 0.32181 0 4.808e+06
0.039994 0.32283 0 4.808e+06
0.20039 0.31211 0 4.808e+06
0.1417 0.29506 0 4.808e+06
0.20921 0.22332 0 4.808e+06
0.13884 0.24227 0 4.808e+06
0.085123 0.29441 0 4.808e+06
0.048446 0.31279 0 4.808e+06
0.086957 0.24399 0 4.808e+06
0.3788 0.21189 0 4.2108e+06
0.29465 0.19323 0 4.2108e+06
0.23755 0.19348 0 4.808e+06
0.29463 0.16054 0 4.2108e+06
0.23776 0.16054 0 4.808e+06
0.19016 0.21038 0 4.808e+06
0.15704 0.21245 0 4.808e+06
0.08678 0.21169 0 4.808e+06
0.012746 0.32168 0 4.808e+06
-0.075715 0.32095 0 4.808e+06
-0.10622 0.32304 0 4.808e+06
-0.16391 0.32118 0 4.808e+06
0.00088411 0.29487 0 4.808e+06
-0.057568 0.29457 0 4.808e+06
-0.0034333 0.24399 0 4.808e+06
-0.055185 0.24185 0 4.808e+06
-0.10983 0.31352 0 4.808e+06
-0.15082 0.29453 0 4.808e+06
-0.11534 0.22049 0 4.808e+06
-0.15155 0.24381 0 4.808e+06
-0.1912 0.32173 0 4.808e+06
-0.281 0.3185 0 4.808e+06
-0.30791 0.32307 0 4.808e+06
-0.33854 0.32148 0 4.808e+06
-0.21248 0.29805 0 4.808e+06
-0.26372 0.29905 0 4.808e+06
-0.22562 0.24399 0 4.808e+06
-0.25035 0.2371 0 4.808e+06
-0.29941 0.31191 0 4.808e+06
-0.35845 0.2954 0 4.808e+06
-0.29231 0.22236 0 4.808e+06
-0.36101 0.24172 0 4.808e+06
-0.0034393 0.21129 0 4.808e+06
-0.07306 0.21304 0 4.808e+06
-0.10579 0.2099 0 4.808e+06
-0.13642 0.21411 0 4.808e+06
-0.22562 0.19323 0 4.808e+06
-0.24439 0.19799 0 4.808e+06
-0.22591 0.16041 0 4.808e+06
-0.23466 0.16082 0 4.808e+06
-0.3077 0.20998 0 4.808e+06
-0.3413 0.21239 0 4.808e+06
-0.40551 0.32178 0 4.2108e+06
-0.50568 0.3218 0 4.2108e+06
-0.41732 0.30844 0 4.2108e+06
-0.44237 0.28859 0 4.2108e+06
-0.41591 0.22004 0 4.2108e+06
-0.44803 0.24236 0 4.2108e+06
-0.50623 0.29315 0 4.2108e+06
-0.50916 0.24296 0 4.2108e+06
-0.57019 0.22334 0 4.2108e+06
-0.59611 0.32199 0 4.2108e+06
-0.65104 0.32199 0 4.2108e+06
-0.72566 0.32129 0 4.2108e+06
-0.75538 0.32301 0 4.2108e+06
-0.59653 0.29315 0 4.2108e+06
-0.65063 0.29315 0 4.2108e+06
-0.59478 0.24245 0 4.2108e+06
-0.65063 0.24399 0 4.2108e+06
-0.70618 0.29525 0 4.2108e+06
-0.76203 0.31284 0 4.2108e+06
-0.70302 0.24183 0 4.2108e+06
-0.77062 0.22133 0 4.2108e+06
-0.41545 0.21099 0 4.2108e+06
-0.45004 0.19812 0 4.2108e+06
-0.4475 0.1673 0 4.2108e+06
-0.52031 0.21236 0 4.2108e+06
-0.55182 0.21045 0 4.2108e+06
-0.5965 0.21131 0 4.2108e+06
-0.65064 0.2113 0 4.2108e+06
-0.72216 0.21286 0 4.2108e+06
-0.7556 0.20987 0 4.2108e+06
-0.78343 0.31973 0 4.2108e+06
-0.87572 0.32111 0 4.2108e+06
-0.90519 0.32263 0 4.2108e+06
-0.95526 0.34127 0 4.2108e+06
-0.79774 0.29271 0 4.2108e+06
-0.85618 0.29497 0 4.2108e+06
-0.79975 0.24326 0 4.2108e+06
-0.8521 0.24246 0 4.2108e+06
-0.91157 0.31224 0 4.2108e+06
-0.95031 0.29572 0 4.2108e+06
-0.92223 0.2213 0 4.2108e+06
-0.94979 0.24354 0 4.2108e+06
-0.78641 0.21505 0 4.2108e+06
-0.87094 0.21237 0 4.2108e+06
-0.90637 0.20934 0 4.2108e+06
-0.93777 0.21481 0 4.2108e+06
0.22244 -0.0296 0 4.808e+06
0.2704 -0.078167 0 4.808e+06
0.24416 -0.056883 0 4.808e+06
0.27311 -0.10653 0 4.808e+06
0.26172 -0.10653 0 4.808e+06
0.2704 -0.1349 0 4.808e+06
0.24428 -0.15599 0 4.808e+06
0.19017 -0.025297 0 4.808e+06
0.14248 -0.02428 0 4.808e+06
0.19815 -0.037432 0 4.808e+06
0.14248 -0.03515 0 4.808e+06
0.093313 -0.02428 0 4.808e+06
0.044144 -0.02428 0 4.808e+06
0.093313 -0.03515 0 4.808e+06
0.044144 -0.03515 0 4.808e+06
0.21156 -0.17357 0 4.808e+06
0.029114 -0.12594 0 4.2108e+06
0.036583 -0.15619 0 4.2108e+06
0.22446 -0.20514 0 4.808e+06
0.2208 -0.2369 0 4.808e+06
0.2129 -0.208 0 4.808e+06
0.19316 -0.25672 0 4.808e+06
0.14497 -0.27484 0 4.808e+06
0.030167 -0.18748 0 4.2108e+06
0.1021 -0.27453 0 4.808e+06
0.1689 -0.2831 0 4.808e+06
0.13875 -0.28647 0 4.808e+06
0.086993 -0.29568 0 4.808e+06
0.044924 -0.3154 0 4.808e+06
-0.0066125 -0.02428 0 4.808e+06
-0.057362 -0.02428 0 4.808e+06
-0.0066125 -0.03515 0 4.808e+06
-0.057362 -0.03515 0 4.808e+06
-0.10653 -0.02428 0 4.808e+06
-0.15266 -0.025282 0 4.808e+06
-0.10653 -0.03515 0 4.808e+06
-0.16036 -0.037257 0 4.808e+06
0.0083286 -0.1259 0 4.2108e+06
0.0007442 -0.15603 0 4.2108e+06
-0.1741 -0.17381 0 4.808e+06
-0.18502 -0.02954 0 4.808e+06
-0.20707 -0.056403 0 4.808e+06
-0.23348 -0.07764 0 4.808e+06
-0.2244 -0.10653 0 4.808e+06
-0.23604 -0.10652 0 4.808e+06
-0.20734 -0.15641 0 4.808e+06
-0.23348 -0.13542 0 4.808e+06
0.0061083 -0.18729 0 4.2108e+06
-0.066235 -0.27472 0 4.808e+06
-0.17577 -0.20789 0 4.808e+06
-0.10861 -0.27494 0 4.808e+06
-0.15584 -0.25716 0 4.808e+06
-0.0075775 -0.31546 0 4.808e+06
-0.050817 -0.29595 0 4.808e+06
-0.10306 -0.28653 0 4.808e+06
-0.1319 -0.2831 0 4.808e+06
-0.18716 -0.20571 0 4.808e+06
-0.18369 -0.23729 0 4.808e+06

 PCLPainter2D

PCLPainter2D

PCLPainter2D class provides a very simple interface (just like PCLPlotter) to draw 2D figures in a canvas or a view. One can add figures by simple add*() methods and in the end, show the canvas by simple display*() methods.

Basic structure

Following is the usual way of using PCLPainter2D class.

//1. declare a Painter2D class
PCLPainter2D painter;

//2. add figures to the canvas by simple add*() methods. Use transform*() functions if required.
painter.addCircle (0,0,5);
painter.addLine (0,0, 5,0);

//3. call a display*() (display (), spin (), spinOnce ()) method for the display of the canvas
painter.display ();

Discussions

I am keeping this discussion her